【題目】如圖,P,Q是方格紙中的兩格點,請按要求畫出以PQ為對角線的格點四邊形.
(1)在圖1中畫出一個面積最小的¨PAQB;
(2)在圖2中畫出一個四邊形PCQD,使其是軸對稱圖形而不是中心對稱圖形,且另一條對角線CD由線段PQ以某一格點為旋轉中心旋轉得到.注:圖1,圖2在答題紙上.
科目:初中數(shù)學 來源: 題型:
【題目】探索規(guī)律:觀察下面由組成的圖案和算式,解答問題:
1+3=4=22
1+3+5=9=32
1+3+5+7=16=42
1+3+5+7+9=25=52
(1)請計算 1+3+5+7+9+11;
(2)請計算 1+3+5+7+9+…+19;
(3)請計算 1+3+5+7+9+…+(2n﹣1);
(4)請用上述規(guī)律計算:21+23+25+…+99.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某高速公路養(yǎng)護小組乘車沿南北公路巡視維護,如果約定向北為正,向南為負,當天的行駛記錄如下(單位:千米)+17,-9,+7,-15,+10,-8,+16.
(1)養(yǎng)護小組最后到達的地方在出發(fā)點的哪個方向?距離出發(fā)點多遠?
(2)若汽車耗油量為0.3升/千米,則這次養(yǎng)護共耗油多少升?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)如圖,在中,已知,,與的平分線交于點,求證:是等腰三角形.
(2).閱讀下列文字:我們知道,對于一個圖形,通過兩種不同的方法計算它的面積,可以得到一個數(shù)學等式.例如由圖1可以得到 .請解答下列問題:
①.寫出圖2中所表示的數(shù)學等式;
②.利用(1)中所得到的結論,解決下面的問題:已知,,求的值;
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】化簡與求值
(1)求3x2+x+3(x2﹣x)﹣(6x2+x)的值,其中x=﹣6.
(2)先化簡,再求值:5(3a2b﹣ab2)﹣4(﹣ab2+3a2b),其中|a+1|+(b﹣)2=0
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AD是ABC的高,AE是△ABC的角平分線,且∠BAC=90°,∠C=2∠B.
求:(1)∠B的度數(shù); (2) ∠DAE的度數(shù)。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,由8個大小相等的小正方形構成的圖案,它的四個頂點 E,F,G,H分別在矩形ABCD的邊AB,BC,CD,DA上,若AB=4,BC=6,則DG的長是______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】八個邊長為1的正方形如圖擺放在平面直角坐標系中,經過原點的一條直線將這八個正方形分成面積相等的兩部分,則該直線的解析式為( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,小河上有一拱橋,拱橋及河道的截面輪廓線由拋物線的一部分ACB和
矩形的三邊AE,ED,DB組成,已知河底ED是水平的,ED=16m,AE=8m,拋物線的頂點C到ED的
距離是11m,以ED所在的直線為x軸,拋物線的對稱軸為y軸建立平面直角坐標系.
(1)求拋物線的解析式;
(2)已知從某時刻開始的40h內,水面與河底ED的距離h(單位:m)隨時間t(單位:h)的變化滿足函數(shù)
關系且當水面到頂點C的距離不大于5m時,需禁止船只通行,請通過計算說明:在這一時段內,需多少小時禁止船只通行?
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com