【題目】某中學(xué)形展唱紅歌比賽活動(dòng),九年級(jí)(1)、(2)班根據(jù)初賽成績(jī),各選出5名選手參加復(fù)賽,兩個(gè)班各選出的5名選手的復(fù)賽成績(jī)?nèi)鐖D所示.

1)根據(jù)圖示填寫下表:

班級(jí)

平均數(shù)(分)

中位數(shù)(分)

眾數(shù)(分)

九(1

85

九(2

85

100

2)結(jié)合兩班復(fù)賽成績(jī)的平均數(shù)和中位數(shù),分析哪個(gè)班級(jí)的復(fù)賽成績(jī)較好;

3)計(jì)算兩班復(fù)賽成績(jī)的方差.

【答案】1)九(1)的平均數(shù)為85,眾數(shù)為85,九(2)班的中位數(shù)是80;(2)九(1)班成績(jī)好些,分析見解析;(370,100

【解析】

1)先根據(jù)條形統(tǒng)計(jì)圖得出每個(gè)班5名選手的復(fù)賽成績(jī),然后平均數(shù)按照公式 ,中位數(shù)和眾數(shù)按照概念即可得出答案;

2)對(duì)比平均數(shù)和中位數(shù),平均數(shù)和中位數(shù)大的成績(jī)較好;

3)按照方差的計(jì)算公式計(jì)算即可.

解:(1)由圖可知九(1)班5名選手的復(fù)賽成績(jī)?yōu)椋?/span>75、8085、85、100,

九(2)班5名選手的復(fù)賽成績(jī)?yōu)椋?/span>70、100、100、75、80,

∴九(1)的平均數(shù)為(75808585100÷585,

九(1)的眾數(shù)為85,

把九(2)的成績(jī)按從小到大的順序排列為:70、75、80100、100,

∴九(2)班的中位數(shù)是80;

2)九(1)班成績(jī)好些.因?yàn)閮蓚(gè)班平均分相同,但九(1)班的中位數(shù)高,所以九(1)班成績(jī)好些.

370

100

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】直線yx+4與x軸、y軸分別交于點(diǎn)A和點(diǎn)B,點(diǎn)C,D分別為線段AB,OB的中點(diǎn),點(diǎn)POA上一動(dòng)點(diǎn),PCPD值最小時(shí)點(diǎn)P的坐標(biāo)為.

A. (-3,0) B. (-6,0) C. (-,0) D. (-,0)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形網(wǎng)格中,每一個(gè)小正方形的邊長(zhǎng)為1△ABC的三個(gè)頂點(diǎn)都在格點(diǎn)上,A、C的坐標(biāo)分別是(46),(14)

(1)請(qǐng)?jiān)趫D中的網(wǎng)格平面內(nèi)建立平面直角坐標(biāo)系;

(2)請(qǐng)畫出△ABC向右平移6個(gè)單位的A1B1C1,并寫出C1的坐標(biāo)   ;

(3)請(qǐng)畫出△ABC關(guān)于原點(diǎn)O對(duì)稱的△A2B2C2 , 并寫出點(diǎn)C2的坐標(biāo)   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】低碳生活,綠色出行”,20171,某公司向深圳市場(chǎng)新投放共享單車640.

(1)若1月份到4月份新投放單車數(shù)量的月平均增長(zhǎng)率相同,3月份新投放共享單車1000.請(qǐng)問該公司4月份在深圳市新投放共享單車多少輛?

(2)考慮到自行車市場(chǎng)需求不斷增加,某商城準(zhǔn)備用不超過70000元的資金再購(gòu)進(jìn)A,B兩種規(guī)格的自行車100輛,已知A型的進(jìn)價(jià)為500/輛,售價(jià)為700/輛,B型車進(jìn)價(jià)為1000/輛,售價(jià)為1300/輛。假設(shè)所進(jìn)車輛全部售完,為了使利潤(rùn)最大,該商城應(yīng)如何進(jìn)貨?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,直線 y=x+2 與兩坐標(biāo)軸分別交于A、B 兩點(diǎn),點(diǎn) C OB 的中點(diǎn),D、E 別是直線 AB、y 軸上的動(dòng)點(diǎn),則△CDE 周長(zhǎng)的最小值是________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,AB=AC,DBC的中點(diǎn),連結(jié)AD,在AD的延長(zhǎng)線上取一點(diǎn)E,連結(jié)BE,CE.

(1)求證:ABE≌△ACE

(2)當(dāng)AEAD滿足什么數(shù)量關(guān)系時(shí),四邊形ABEC是菱形?并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直角坐標(biāo)系中,正方形OABC的頂點(diǎn)O與原點(diǎn)重合,頂點(diǎn)A、C分別在x軸、y軸上,反比例函數(shù)y=(k≠0x>0)的圖象與正方形的兩邊AB、BC分別交于點(diǎn)EF,FDx軸,垂足為D,連接OE、OF、EF,FDOE相交于點(diǎn)G.下列結(jié)論:①OF=OE;②∠EOF=60°;③四邊形AEGD與△FOG面積相等;④EF=CF+AE;⑤若∠EOF=45°,EF=4,則直線FE的函數(shù)解析式為.其中正確結(jié)論的個(gè)數(shù)是(

A.2B.3C.4D.5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,O 為原點(diǎn),點(diǎn) A(4,0),點(diǎn) B(0,3),把△ABO 繞點(diǎn) B 逆時(shí)針旋轉(zhuǎn),得△A′BO′,點(diǎn) A、O 旋轉(zhuǎn)后的對(duì)應(yīng)點(diǎn)為 A′、O′,記旋轉(zhuǎn)角為ɑ.

(1)如圖 1,若ɑ=90°,求 AA′的長(zhǎng);

(2)如圖 2,若ɑ=120°,求點(diǎn) O′的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,在正方形 ABCD 中,AB=5,點(diǎn) F 是邊 DC 上的一個(gè)動(dòng)點(diǎn),將ADF 繞點(diǎn) A 順時(shí)針旋轉(zhuǎn) 90°ABE,點(diǎn) F 的對(duì)應(yīng)點(diǎn) E 落在 CB 的延長(zhǎng)線上,連接 EF

(1)如圖 1,求證:∠DAF+∠FEC=∠AEF;

(2)△ADF 沿 AF 翻折至AGF,連接 EG

如圖 2,若 DF=2,求 EG 的長(zhǎng);

如圖 3,連接 BD EF 于點(diǎn) Q,連接 GQ,則 SQEG 的最大值為

查看答案和解析>>

同步練習(xí)冊(cè)答案