【題目】某中學形展唱紅歌比賽活動,九年級(1)、(2)班根據(jù)初賽成績,各選出5名選手參加復賽,兩個班各選出的5名選手的復賽成績如圖所示.

1)根據(jù)圖示填寫下表:

班級

平均數(shù)(分)

中位數(shù)(分)

眾數(shù)(分)

九(1

85

九(2

85

100

2)結合兩班復賽成績的平均數(shù)和中位數(shù),分析哪個班級的復賽成績較好;

3)計算兩班復賽成績的方差.

【答案】1)九(1)的平均數(shù)為85,眾數(shù)為85,九(2)班的中位數(shù)是80;(2)九(1)班成績好些,分析見解析;(370,100

【解析】

1)先根據(jù)條形統(tǒng)計圖得出每個班5名選手的復賽成績,然后平均數(shù)按照公式 ,中位數(shù)和眾數(shù)按照概念即可得出答案;

2)對比平均數(shù)和中位數(shù),平均數(shù)和中位數(shù)大的成績較好;

3)按照方差的計算公式計算即可.

解:(1)由圖可知九(1)班5名選手的復賽成績?yōu)椋?/span>7580、85、85、100,

九(2)班5名選手的復賽成績?yōu)椋?/span>70、100、10075、80,

∴九(1)的平均數(shù)為(75808585100÷585,

九(1)的眾數(shù)為85

把九(2)的成績按從小到大的順序排列為:70、7580、100、100,

∴九(2)班的中位數(shù)是80

2)九(1)班成績好些.因為兩個班平均分相同,但九(1)班的中位數(shù)高,所以九(1)班成績好些.

370

100

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】直線yx+4與x軸、y軸分別交于點A和點B,點C,D分別為線段ABOB的中點,點POA上一動點,PCPD值最小時點P的坐標為.

A. (-3,0) B. (-6,0) C. (-,0) D. (-,0)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在正方形網(wǎng)格中,每一個小正方形的邊長為1△ABC的三個頂點都在格點上,AC的坐標分別是(4,6)(1,4)

(1)請在圖中的網(wǎng)格平面內建立平面直角坐標系;

(2)請畫出△ABC向右平移6個單位的A1B1C1,并寫出C1的坐標   

(3)請畫出△ABC關于原點O對稱的△A2B2C2 , 并寫出點C2的坐標   

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】低碳生活,綠色出行”,20171,某公司向深圳市場新投放共享單車640.

(1)若1月份到4月份新投放單車數(shù)量的月平均增長率相同,3月份新投放共享單車1000.請問該公司4月份在深圳市新投放共享單車多少輛?

(2)考慮到自行車市場需求不斷增加,某商城準備用不超過70000元的資金再購進A,B兩種規(guī)格的自行車100輛,已知A型的進價為500/輛,售價為700/輛,B型車進價為1000/輛,售價為1300/輛。假設所進車輛全部售完,為了使利潤最大,該商城應如何進貨?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,直線 y=x+2 與兩坐標軸分別交于A、B 兩點,點 C OB 的中點,D、E 別是直線 AB、y 軸上的動點,則△CDE 周長的最小值是________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC中,AB=AC,DBC的中點,連結AD,在AD的延長線上取一點E,連結BE,CE.

(1)求證:ABE≌△ACE

(2)當AEAD滿足什么數(shù)量關系時,四邊形ABEC是菱形?并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在直角坐標系中,正方形OABC的頂點O與原點重合,頂點AC分別在x軸、y軸上,反比例函數(shù)y=(k≠0,x>0)的圖象與正方形的兩邊AB、BC分別交于點E、F,FDx軸,垂足為D,連接OE、OF、EF,FDOE相交于點G.下列結論:①OF=OE;②∠EOF=60°;③四邊形AEGD與△FOG面積相等;④EF=CF+AE;⑤若∠EOF=45°,EF=4,則直線FE的函數(shù)解析式為.其中正確結論的個數(shù)是(

A.2B.3C.4D.5

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,O 為原點,點 A(4,0),點 B(0,3),把△ABO 繞點 B 逆時針旋轉,得△A′BO′,點 A、O 旋轉后的對應點為 A′、O′,記旋轉角為ɑ.

(1)如圖 1,若ɑ=90°,求 AA′的長;

(2)如圖 2,若ɑ=120°,求點 O′的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知,在正方形 ABCD 中,AB=5,點 F 是邊 DC 上的一個動點,將ADF 繞點 A 順時針旋轉 90°ABE,點 F 的對應點 E 落在 CB 的延長線上,連接 EF

(1)如圖 1,求證:∠DAF+∠FEC=∠AEF;

(2)△ADF 沿 AF 翻折至AGF,連接 EG

如圖 2,若 DF=2,求 EG 的長;

如圖 3,連接 BD EF 于點 Q,連接 GQ,則 SQEG 的最大值為

查看答案和解析>>

同步練習冊答案