【題目】如圖,已知點(diǎn)D在△ABC的外部,AD∥BC,點(diǎn)E在邊AB上,ABAD=BCAE.
(1)求證:∠BAC=∠AED;
(2)在邊AC取一點(diǎn)F,如果∠AFE=∠D,求證:.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,Rt△ABC在第一象限, ,AB=AC=2,點(diǎn)A在直線上,其中點(diǎn)A的橫坐標(biāo)為1,且AB∥軸,AC∥軸,若雙曲線與有交點(diǎn),則k的取值范圍是_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若兩個(gè)二次函數(shù)圖象的頂點(diǎn),開口方向都相同,則稱這兩個(gè)二次函數(shù)為“同簇二次函數(shù)”。
(1)請寫出兩個(gè)為“同簇二次函數(shù)”的函數(shù);
(2)已知關(guān)于x的二次函數(shù)y1=2x2—4mx+2m2+1,和y2=ax2+bx+5,其中y1的圖象經(jīng)過點(diǎn)A(1,1),若y1+y2為y1為“同簇二次函數(shù)”,求函數(shù)y2的表達(dá)式,并求當(dāng)0≤x≤3時(shí),y2的最大值。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)為調(diào)查本校學(xué)生平均每天完成作業(yè)所用時(shí)間的情況,隨機(jī)調(diào)查了50名同學(xué),如圖是根據(jù)調(diào)查所得數(shù)據(jù)繪制的統(tǒng)計(jì)圖的一部分.
請根據(jù)以上信息,解答下列問題:
(1)將統(tǒng)計(jì)圖補(bǔ)充完整;
(2)若該校共有1 800名學(xué)生,根據(jù)以上調(diào)查結(jié)果估計(jì)該校全體學(xué)生平均每天完成作業(yè)所用總時(shí)間.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如果點(diǎn)D、E分別在△ABC中的邊AB和AC上,那么不能判定DE∥BC的比例式是( 。
A. AD:DB=AE:EC B. DE:BC=AD:AB
C. BD:AB=CE:AC D. AB:AC=AD:AE
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,PA、PB切⊙O于A、B兩點(diǎn),CD切⊙O于點(diǎn)E,交PA,PB于C、D,若⊙O的半徑為r,△PCD的周長等于3r,則tan∠APB的值是( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平面直角坐標(biāo)系中,一次函數(shù)(為常數(shù),)的圖像與軸、軸分別相交于點(diǎn),半徑為4的⊙與軸正半軸相交于點(diǎn),與軸相交于點(diǎn),點(diǎn)在點(diǎn)上方.
(1)若直線與弧有兩個(gè)交點(diǎn).
①求的度數(shù);
②用含的代數(shù)式表示,并直接寫出的取值范圍;
(2)設(shè),在線段上是否存在點(diǎn),使?若存在,請求出點(diǎn)坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=﹣2x2+4x與x軸交于點(diǎn)O、A,把拋物線在x軸及其上方的部分記為C1,將C1以y鈾為對稱軸作軸對稱得到C2,C2與x軸交于點(diǎn)B,若直線y=x+m與C1,C2共有3個(gè)不同的交點(diǎn),則m的取值范圍是( )
A. 0<m< B. <m<
C. 0<m< D. m<或m<
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:點(diǎn)A(0,4),B(0,﹣6),C為x軸正半軸上一點(diǎn),且滿足∠ACB=45°,則( )
A. △ABC外接圓的圓心在OC上
B. ∠BAC=60°
C. △ABC外接圓的半徑等于5
D. OC=12
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com