【題目】計算: ﹣(﹣1)2015×(﹣ ﹣2﹣|1﹣ |

【答案】解: ﹣(﹣1)2015×(﹣ ﹣2﹣|1﹣ | =3﹣(﹣1)×4﹣ +1
=3+4﹣ +1
=8﹣
【解析】首先計算乘方、開方和乘法,然后從左向右依次計算,求出算式的值是多少即可.
【考點精析】根據(jù)題目的已知條件,利用整數(shù)指數(shù)冪的運算性質(zhì)和實數(shù)的運算的相關知識可以得到問題的答案,需要掌握aman=am+n(m、n是正整數(shù));(amn=amn(m、n是正整數(shù));(ab)n=anbn(n是正整數(shù));am/an=am-n(a不等于0,m、n為正整數(shù));(a/b)n=an/bn(n為正整數(shù));先算乘方、開方,再算乘除,最后算加減,如果有括號,先算括號里面的,若沒有括號,在同一級運算中,要從左到右進行運算.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】列一元一次方程解應用題:

某管道由甲、乙兩工程隊單獨施工分別需要30天、20天.

(1)如果兩隊從管道兩端同時施工,需要多少天完工?

(2)又知甲隊單獨施工每天需付200元施工費,乙隊單獨施工每天需付280元施工費,那么是由甲隊單獨施工,還是由乙隊單獨施工,還是由兩隊同時施工?請你按照少花錢多辦事的原則,設計一個方案,并通過計算說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,矩形ABCD中,AD=FDA延長線上一點,GCF上一點,且ACG=AGC,GAF=F=20°,則AB=  

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某市水果批發(fā)部門欲將A市的一批水果運往本市銷售,有火車和汽車兩種運輸方式,運輸過程中的損耗均為200元/時。其它主要參考數(shù)據(jù)如下:

運輸工具

途中平均速度(千米/時)

運費(元/千米)

裝卸費用(元)

火車

100

15

2000

汽車

80

20

900

(1)如果汽車的總支出費用比火車費用多1100元,你知道本市與A市之間的路程是多少千米嗎?請你列方程解答

(2)如果A市與某市之間的距離為S千米,且知道火車與汽車在路上耽誤的時間分別為2小時和3.1小時,你若是某市水果批發(fā)部門的經(jīng)理,要將這種水果從A市運往本市銷售。你將選擇哪種運輸方式比較合算呢?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形ABCD中,有一個菱形BFDE(點E、F分別在線段AB、CD上),記它們的面積分別為SABCD和SBFDE . 現(xiàn)給出下列命題:
(i)若 = ,則tan∠EDF=
(ii)若DE2=BDEF,則DF=2AD
那么,下面判斷正確的是( )

A.①正確,②正確
B.①正確,②錯誤
C.①錯誤,②正確
D.①錯誤,②錯誤

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一次函數(shù)y=kx+b的圖象與x軸的交點坐標為(2,0),則下列說法:

①yx的增大而減小;②b>0;③關于x的方程kx+b=0的解為x=2;④不等式kx+b>0的解集是x>2.

其中說法正確的有_________(把你認為說法正確的序號都填上).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閱讀理解:

我們已經(jīng)學習的直角三角形知識包括:勾股定理,30°、45°特殊角的直角三角形的邊之間的關系等,在解決初中數(shù)學問題上起到重要作用,銳角三角函數(shù)是另一個研究直角三角形中邊角間關系的知識,通過銳角三角函數(shù)也可以幫助解決數(shù)學問題.

閱讀下列材料,完成習題:

如圖1,在RtABC中,∠C=90°,我們把銳角A的對邊與斜邊的比叫做∠A的正弦(sine),記作sinA,即sinA=

例如:a=3,c=7,則sinA=

問題:在RtABC中,∠C=90°

1)如圖2,BC=5,AB=8,求sinA的值.

2)如圖3,當∠A=45°時,求sinB的值.

3AC=2,sinB=,求BC的長度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在圣誕節(jié)來臨之際,某兒童商場用2800元購進了一批玩具,上市后很快售完,商場又用7200元購進第二批這種玩具,所購數(shù)量是第一批購進數(shù)量的2倍,但每個玩具進價多了4元.

(1)該商場兩次共購進這批玩具多少個?

(2)如果這兩批玩具每個的售價相同,且全部售完后總利潤率不低于20%,那么每個玩具的售價至少是多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】計算:2sin45°﹣3﹣2+ +| ﹣2|+

查看答案和解析>>

同步練習冊答案