【題目】規(guī)定:如果關(guān)于x的一元二次方程ax2+bx+c=0(a≠0)有兩個實數(shù)根,且其中一個根是另一個根的2倍,則稱這樣的方程為“倍根方程”.現(xiàn)有下列結(jié)論: ①方程x2+2x﹣8=0是倍根方程;
②若關(guān)于x的方程x2+ax+2=0是倍根方程,則a=±3;
③若關(guān)于x的方程ax2﹣6ax+c=0(a≠0)是倍根方程,則拋物線y=ax2﹣6ax+c與x軸的公共點的坐標(biāo)是(2,0)和(4,0);
④若點(m,n)在反比例函數(shù)y=的圖象上,則關(guān)于x的方程mx2+5x+n=0是倍根方程.
上述結(jié)論中正確的有( )
A. ①② B. ③④ C. ②③ D. ②④
【答案】C
【解析】分析:①通過解方程得到該方程的根,結(jié)合“倍根方程”的定義進(jìn)行判斷;②設(shè)=2,得到=2=2,得到當(dāng)=1時,=2,當(dāng)=-1時,=-2,于是得到結(jié)論;③根據(jù)“倍根方程”的定義即可得到結(jié)論;④若點(m,n)在反比例函數(shù)y=的圖象上,得到mn=4,然后解方程m+5x+n=0即可得到正確的結(jié)論;
詳解:①由-2x-8=0,得:(x-4)(x+2)=0, 解得=4,=-2, ∵≠2,或≠2,
∴方程-2x-8=0不是倍根方程;故①錯誤;
②關(guān)于x的方程+ax+2=0是倍根方程, ∴設(shè)=2, ∴=2=2, ∴=±1,
當(dāng)=1時,=2, 當(dāng)=-1時,=-2, ∴+=-a=±3, ∴a=±3,故②正確;
③關(guān)于x的方程a-6ax+c=0(a≠0)是倍根方程, ∴=2,
∵拋物線y=a-6ax+c的對稱軸是直線x=3, ∴拋物線y=a-6ax+c與x軸的交點的坐標(biāo)是(2,0)和(4,0), 故③正確;
④∵點(m,n)在反比例函數(shù)y=的圖象上, ∴mn=4, 解m+5x+n=0得
=,=, ∴=4, ∴關(guān)于x的方程m+5x+n=0不是倍根方程;
故選C.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校組織七年級學(xué)生參加冬令營活動,本次冬令營活動分為甲、乙、丙三組進(jìn)行.如圖,條形統(tǒng)計圖和扇形統(tǒng)計圖反映了學(xué)生參加冬令營活動的報名情況,請你根據(jù)圖中的信息回答下列問題:
(1)七年級報名參加本次活動的總?cè)藬?shù)為 ,扇形統(tǒng)計圖中,表示甲組部分的扇形的圓心角是 度;
(2)補(bǔ)全條形統(tǒng)計圖;
(3)根據(jù)實際需要,將從甲組抽調(diào)部分學(xué)生到丙組,使丙組人數(shù)是甲組人數(shù)的3倍,則應(yīng)從甲組抽調(diào)多少名學(xué)生到丙組?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】觀察某月的月歷,回答下列問題.
(1)設(shè)十字框中間的數(shù)為,求帶陰影的十字框中間的5個數(shù)的和是多少?
(2)小李一家外出游玩了5天,這5天的日期之和是75,小李一家是幾號外出的?
(3)在該月的日歷上用十字框框出5個數(shù),能使這5個數(shù)的和為100嗎?如果不能,請說明理由;如果能,請求出十字框中間的數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】學(xué)校需要添置教師辦公桌椅A、B兩型共200套,已知2套A型桌椅和1套B型桌椅共需2000元,1套A型桌椅和3套B型桌椅共需3000元.
(1)求A,B兩型桌椅的單價;
(2)若需要A型桌椅不少于120套,B型桌椅不少于70套,平均每套桌椅需要運費10元.設(shè)購買A型桌椅x套時,總費用為y元,求y與x的函數(shù)關(guān)系式,并直接寫出x的取值范圍;
(3)求出總費用最少的購置方案.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知點C是線段AB的中點,點D是線段BC上一點,下列條件不能確定點D是線段BC的中點的是( )
A.CD=DBB.BD=ADC.2AD=3BCD.3AD=4BC
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】矩形紙片ABCD,AB=4,BC=12,E、F分別是AD、BC邊上的點,ED=3.將矩形紙片沿EF折疊,使點C落在AD邊上的點G處,點D落在點H處.
(1)矩形紙片ABCD的面積為
(2)如圖1,連結(jié)EC,四邊形CEGF是什么特殊四邊形,為什么?
(3)M,N是AB邊上的兩個動點,且不與點A,B重合,MN=1,求四邊形EFMN周長的最小值.(計算結(jié)果保留根號)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點P1是線段AB上一點,AP1=2BP1;點P2是線段P1B上一點,P1P2=2BP2:點P3是線段P2B上一點,P2P3=2BP3 , …請借助所給的圖形,計算 的結(jié)果為________(n為正整數(shù),用含n的代數(shù)式表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知在平面直角坐標(biāo)系中,直線AB: 與x軸、y軸分別交于B、A兩點,等腰Rt△OCD,∠D=90°,C坐標(biāo)為(﹣4,0).
(1)求A、B坐標(biāo);
(2)將△OCD沿x軸正方形平移,速度為1個單位為每秒,時間為t(0≤t≤6),設(shè)△OCD與△OAB重疊面積為S,請寫出S與t之間的函數(shù)關(guān)系式;
(3)將△OCD繞O點旋轉(zhuǎn),當(dāng)O、B、D三點構(gòu)成的三角形為直角三角形時,請直接寫出D點坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,的方向是北偏東,的方向時北偏西.
(1)若,則的方向是 ;
(2)是的反方向延長線,的方向是 ;
(3)若,請用方位角表示的方向是 ;
(4)在(1)(2)(3)的條件下,則 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com