若點(2,3)在反比例函數(shù)的圖象上,則此反比例函數(shù)的圖象必經(jīng)過點( )
A.(-1,-6)
B.(-1,6)
C.(-2,3)
D.(2,-3)
【答案】分析:先利用待定系數(shù)法求得該反比例函數(shù)的解析式,然后將四個選項中的點的坐標(biāo)代入所求的函數(shù)的解析式進行一一驗證即可.
解答:解:∵點(2,3)在反比例函數(shù)的圖象上,
∴3=,
解得,m+1=6,
∴xy=6;
∴只需把各點橫縱坐標(biāo)相乘,結(jié)果為6的點在函數(shù)圖象上,
四個選項中只有A符合.
故選A.
點評:本題主要考查反比例函數(shù)圖象上點的坐標(biāo)特征,所有在反比例函數(shù)上的點的橫縱坐標(biāo)的積應(yīng)等于比例系數(shù).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,拋物線y=ax2+bx+c經(jīng)過點A(1,2)、B(2,1)和C(-2,-1)三點.
(1)求拋物線的解析式;
(2)反比例函數(shù)y=
k
x
的圖象的一個分支經(jīng)過點C,并且另個分支與拋物線在第一象限相交.
①求出k的值;
②反比函數(shù)y=
k
x
的圖象是否經(jīng)過點A和點B,試說明理由;
③若點P(a,b)是反比例函數(shù)y=
k
x
在第三象限的圖象上的一個動點,連接AB、PA、PB,請問是否存在這樣的一點P使△PAB的面積為3?如果存在,試求出所有符合條件的點P的坐標(biāo);如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知反比例函數(shù)y1=
k
x
的圖象經(jīng)過點A(4,
1
2
),若一次函數(shù)y2=x+1的圖象平移后經(jīng)過該反比例函數(shù)圖象上的點B(2,m)
(1)求平移后的一次函數(shù)的解析式;
(2)若反比列函數(shù)y1=
k
x
與一次函數(shù)y2=x+1交于點C和D.求點C、D的坐標(biāo);
(3)問當(dāng)x在什么范圍時y1>y2;
(4)求△CDB的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖1,已知:點A(-1,1)繞原點O順時針旋轉(zhuǎn)90°后剛好落在反比例函數(shù)y=
k
x
圖象上點B處.
(1)求反比函數(shù)的解析式;
(2)如圖2,直線OB與反比例函數(shù)圖象交于另一點C,在x軸上是否存在點D,使△DBC是等腰三角形?若不存在,請說明不存在的理由;如果存在,請求所有符合條件的點D的坐標(biāo);
(3)如圖3,直線y=-x+
2
與x軸、y軸分別交于點E、F,點P為反比例函數(shù)在第一象限圖象上一動點,PG⊥x軸于G,交線段EF于M,PH⊥y軸于H,交線段EF于N.當(dāng)點P運動時,∠MON的度數(shù)是否改變?如果改變,試說明理由;如果不變,請求其度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,拋物線y=ax2+bx+c經(jīng)過點A(1,2)、B(2,1)和C(-2,-1)三點.
(1)求拋物線的解析式;
(2)反比例函數(shù)y=數(shù)學(xué)公式的圖象的一個分支經(jīng)過點C,并且另個分支與拋物線在第一象限相交.
①求出k的值;
②反比函數(shù)y=數(shù)學(xué)公式的圖象是否經(jīng)過點A和點B,試說明理由;
③若點P(a,b)是反比例函數(shù)y=數(shù)學(xué)公式在第三象限的圖象上的一個動點,連接AB、PA、PB,請問是否存在這樣的一點P使△PAB的面積為3?如果存在,試求出所有符合條件的點P的坐標(biāo);如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年海南省中考數(shù)學(xué)模擬試卷(5)(解析版) 題型:解答題

如圖,拋物線y=ax2+bx+c經(jīng)過點A(1,2)、B(2,1)和C(-2,-1)三點.
(1)求拋物線的解析式;
(2)反比例函數(shù)y=的圖象的一個分支經(jīng)過點C,并且另個分支與拋物線在第一象限相交.
①求出k的值;
②反比函數(shù)y=的圖象是否經(jīng)過點A和點B,試說明理由;
③若點P(a,b)是反比例函數(shù)y=在第三象限的圖象上的一個動點,連接AB、PA、PB,請問是否存在這樣的一點P使△PAB的面積為3?如果存在,試求出所有符合條件的點P的坐標(biāo);如果不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案