【題目】如圖,在矩形ABCD中,AB=3,BC=5,以B為圓心BC為半徑畫弧交AD于點E,連接CE,作BF⊥CE,垂足為F,則tan∠FBC的值為( )

A.
B.
C.
D.

【答案】D
【解析】解:∵以B為圓心BC為半徑畫弧交AD于點E,

∴BE=BC=5,

∴AE=

∴DE=AD﹣AE=5﹣4=1,

∴CE= ,

∵BC=BE,BF⊥CE,

∴點F是CE的中點,

∴CF= ,

∴BF= ,

∴tan∠FBC= ,

即tan∠FBC的值為

所以答案是:D.

【考點精析】解答此題的關鍵在于理解勾股定理的概念的相關知識,掌握直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2,以及對垂徑定理的推論的理解,了解推論1:A、平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條弧B、弦的垂直平分線經過圓心,并且平分弦所對的兩條弧C、平分弦所對的一條弧的直徑,垂直平分弦,并且平分弦所對的另一條。煌普2 :圓的兩條平行弦所夾的弧相等.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線y= +bx+c與x軸交于A(﹣1,0),B(3,0)兩點,與y軸交于C(0,﹣3).

(1)求拋物線的解析式;
(2)D是y軸正半軸上的點,OD=3,在線段BD上任取一點E(不與B,D重合),經過A,B,E三點的圓交直線BC于點F,
①試說明EF是圓的直徑;
②判斷△AEF的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(本題8) 已知,如圖,AC平分∠BAD,CEABE,CFADF,且BC=DC

1)求證:BE=DF;

2)若AB=5,AD=3,求AE的長;

3)若ABC的面積是23,ADC面積是18,則BEC的面積等于

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了了解某種車的耗油量,我們對這種車在高速公路以100km/h的速度做了耗油試驗,并把試驗的數(shù)據(jù)記錄下來,制成下表:

汽車行駛時間t(h)

0

1

2

3

油箱剩余油量Q(L)

100

94

88

82

1)根據(jù)上表的數(shù)據(jù),你能用t表示Q嗎?試一試;

2)汽車行駛6h后,油箱中的剩余油量是多少?

3)若汽車油箱中剩余油量為52L,則汽車行駛了多少小時?

4)若該種汽車油箱只裝了36L汽油,汽車以100km/h的速度在一條全長700公里的高速公路上勻速行駛,請問它在中途不加油的情況下能從高速公路起點開到高速公路終點嗎,為什么?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,點Ba,b)是第一象限內一點,且ab滿足等式a2-6a+9+|b-1|=0

1)求點B的坐標;

2)如圖,動點C以每秒1個單位長度的速度從O點出發(fā),沿x軸的正半軸方向運動,同時動點A以每秒2個單位長度的速度從O點出發(fā),沿y軸的正半軸方向運動,設運動的時間為t秒,當t為何值時,ABCAB為斜邊的等腰直角三角形;

3)如圖,在(2)的條件下,作∠ABC的平分線BD,設BD的長為m,ADB的面積為S.請用含m的式子表示S

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,扇形OMN與正方形ABCD,半徑OM與邊AB重合,弧MN的長等于AB的長,已知AB=2,扇形OMN沿著正方形ABCD逆時針滾動到點O首次與正方形的某頂點重合時停止,則點O經過的路徑長

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】隨著互聯(lián)網技術的廣泛應用,“天貓”、“京東”、“唯品會”等網絡大型‘:賣場”的日趨完善,網購成了現(xiàn)代人生活的一部分。與此同時,快遞行業(yè)也隨之高速發(fā)展.

(1)如果每名快遞員每月最多完成快遞投遞量相同,且每月投遞完l2萬件快遞量需要快遞員比投遞完12.6萬件快遞置需要快遞員人數(shù)少1人,求每名快遞員每月最多完成快遞投遞量是多少萬件;

(2)我市某小型快遞公司原有員工20名,隨著快遞投遞任務的加大,該快遞公司投入部分資金用于改善投遞條件,改善后,每人每月投遞快遞任務量可增加,同時該快遞公司又增加了20%的快遞員,從而預計每月最大可完成投遞快遞任務l5.12萬件,求的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖是8×8的正方形網格,每個小方格都是邊長為1的正方形,A、B是格點(網格線的交點).以網格線所在直線為坐標軸,在網格中建立平面直角坐標系xOy,使點A坐標為(﹣2,4).

(1)在網格中,畫出這個平面直角坐標系;

(2)在第二象限內的格點上找到一點C,使A、B、C三點組成以AB為底邊的等腰三角形,且腰長是無理數(shù),則點C的坐標是   ;并畫出△ABC關于y軸對稱的△A′B′C′.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC內有一點D,且DA=DB=DC.若∠DAB=20°,∠DAC=30°,則∠BDC的度數(shù)為( )

A. 100° B. 80° C. 70° D. 50°

查看答案和解析>>

同步練習冊答案