【題目】如圖,在△ABC中,AC=BC,將△ABC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)60°,得到△ADE,若AB=2,∠ACB=30°,則線段CD的長度為______.
【答案】2
【解析】
連接CE,如圖,利用旋轉(zhuǎn)的性質(zhì)得到AD=AB=2,AE=AC,∠CAE=60°,∠AED=∠ACB=30°,則可判斷△ACE為等邊三角形,從而得到∠AEC=60°,再判斷DE平分∠AEC,根據(jù)等腰三角形的性質(zhì)得到DE垂直平分AC,于是根據(jù)線段垂直平分線的性質(zhì)得DC=DA=2.
解:連接CE,如圖,
∵△ABC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)60°,得到△ADE,
∴AD=AB=2,AE=AC,∠CAE=60°,∠AED=∠ACB=30°,
∴△ACE為等邊三角形,
∴∠AEC=60°,
∴DE平分∠AEC,
∴DE垂直平分AC,
∴DC=DA=2.
故答案為2.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,函數(shù)y=x(x≥0)的圖象與反比例函數(shù)y=的圖象交于點(diǎn)A,若點(diǎn)A繞點(diǎn)B(,0)順時(shí)針旋轉(zhuǎn)90°后,得到的點(diǎn)A'仍在y=的圖象上,則點(diǎn)A的坐標(biāo)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下面是小東設(shè)計(jì)的“以線段AB為一條對(duì)角線作一個(gè)菱形”的尺規(guī)作圖過程.
已知:線段AB.
求作:菱形ACBD.
作法:如圖,
①以點(diǎn)A為圓心,以AB長為半徑作⊙A;
②以點(diǎn) B為圓心,以AB長為半徑作⊙B,
交⊙A 于C,D兩點(diǎn);
③連接AC,BC,BD,AD.
所以四邊形ACBD就是所求作的菱形.
根據(jù)小東設(shè)計(jì)的尺規(guī)作圖過程,
(1)使用直尺和圓規(guī),補(bǔ)全圖形(保留作圖痕跡);
(2)完成下面的證明.
證明:∵點(diǎn)B,C,D在⊙A上,
∴AB=AC=AD( )(填推理的依據(jù)).
同理 ∵點(diǎn)A,C,D在⊙B上,
∴AB=BC=BD.
∴ = = = .
∴四邊形ACBD是菱形. ( )(填推理的依據(jù)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】拋物線y=x2+bx+c與x軸負(fù)半軸交于點(diǎn)A,與x軸正半軸交于點(diǎn)B,與y軸交于點(diǎn)C.
(1)如圖1,若OB=2OA=2OC
①求拋物線的解析式;
②若M是第一象限拋物線上一點(diǎn),若cos∠MAC=,求M點(diǎn)坐標(biāo).
(2)如圖2,直線EF∥x軸與拋物線相交于E、F兩點(diǎn),P為EF下方拋物線上一點(diǎn),且P(m,﹣2).若∠EPF=90°,則EF所在直線的縱坐標(biāo)是否為定值,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某班數(shù)學(xué)興趣小組對(duì)函數(shù)的圖象和性質(zhì)將進(jìn)行了探究,探究過程如下,請(qǐng)補(bǔ)充完整.
(1)自變量的取值范圍是除0外的全體實(shí)數(shù),與的幾組對(duì)應(yīng)值列表如下:
… | 1 | 2 | 3 | 6 | … | |||||
… | 1 | 2 | 6 | 1 | 3 | 2 | 1 | … |
其中,_________.
(2)根據(jù)上表數(shù)據(jù),在如圖所示的平面直角坐標(biāo)系中描點(diǎn)并畫出了函數(shù)圖象的一部分,請(qǐng)畫出該函數(shù)圖象的另一部分.
(3)觀察函數(shù)圖象,寫出一條函數(shù)性質(zhì).
(4)進(jìn)一步探究函數(shù)圖象發(fā)現(xiàn):
①函數(shù)圖象與軸交點(diǎn)情況是________,所以對(duì)應(yīng)方程的實(shí)數(shù)根的情況是________.
②方程有_______個(gè)實(shí)效根;
③關(guān)于的方程有2個(gè)實(shí)數(shù)根,的取值范圍是________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,D是AC上一點(diǎn),過B,C,D三點(diǎn)的⊙O交AB于點(diǎn)E,連接ED,EC,點(diǎn)F是線段AE上的一點(diǎn),連接FD,其中∠FDE=∠DCE.
(1)求證:DF是⊙O的切線.
(2)若D是AC的中點(diǎn),∠A=30°,BC=4,求DF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平行四邊形ABCD中,E是BC邊上一點(diǎn),F是DE上一點(diǎn),若∠B=∠AFE,AB=AF.
求證:(1)△ADF≌△DEC.(2)BE=EF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖在中,,動(dòng)點(diǎn)從點(diǎn)沿線段向點(diǎn)運(yùn)動(dòng),以為斜邊在右側(cè)作等腰直角三角形則的最小值為_____________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,任意四邊形ABCD中,E,F(xiàn),G,H分別是AB,BC,CD,DA上的點(diǎn),對(duì)于四邊形EFGH的形狀,某班學(xué)生在一次數(shù)學(xué)活動(dòng)課中,通過動(dòng)手實(shí)踐,探索出如下結(jié)論,其中錯(cuò)誤的是( )
A.當(dāng)E,F(xiàn),G,H是各邊中點(diǎn),且AC=BD時(shí),四邊形EFGH為菱形
B.當(dāng)E,F(xiàn),G,H是各邊中點(diǎn),且AC⊥BD時(shí),四邊形EFGH為矩形
C.當(dāng)E,F(xiàn),G,H不是各邊中點(diǎn)時(shí),四邊形EFGH可以為平行四邊形
D.當(dāng)E,F(xiàn),G,H不是各邊中點(diǎn)時(shí),四邊形EFGH不可能為菱形
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com