【題目】正方形ABCD的軌道上有兩個點甲與乙,開始時甲在A處,乙在C處,它們沿著正方形軌道順時針同時出發(fā),甲的速度為每秒1 cm,乙的速度為每秒5 cm,已知正方形軌道ABCD的邊長為2 cm,則乙在第2 020次追上甲時的位置在(  )

A.ABB.BC

C.CDD.AD

【答案】D

【解析】

根據(jù)題意列一元一次方程,然后四個循環(huán)為一次即可求得結論.

解:設乙走x秒第一次追上甲.
根據(jù)題意,得
5x-x=4
解得x=1
∴乙走1秒第一次追上甲,則乙在第1次追上甲時的位置是AB上;
設乙再走y秒第二次追上甲.
根據(jù)題意,得5y-y=8,解得y=2
∴乙再走2秒第二次追上甲,則乙在第2次追上甲時的位置是BC上;
同理:∴乙再走2秒第三次次追上甲,則乙在第3次追上甲時的位置是CD上;
∴乙再走2秒第四次追上甲,則乙在第4次追上甲時的位置是DA上;
乙在第5次追上甲時的位置又回到AB上;
2020÷4=505
∴乙在第2020次追上甲時的位置是AD上.
故選:D

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】已知邊長為4的正方形ABCD,頂點A與坐標原點重合,一反比例函數(shù)圖象過頂點C,動點P以每秒1個單位速度從點A出發(fā)沿AB方向運動,動點Q同時以每秒4個單位速度從D點出發(fā)沿正方形的邊DCCBBA方向順時針折線運動,當點P與點Q相遇時停止運動,設點P的運動時間為t

1)求出該反比例函數(shù)解析式;

2)連接PD,當以點Q和正方形的某兩個頂點組成的三角形和△PAD全等時,求點Q的坐標;

3)用含t的代數(shù)式表示以點Q、PD為頂點的三角形的面積s,并指出相應t的取值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閱讀下列解題過程:

計算:(-5)÷×20.

解:原式=(-5)÷×20 (第一步)

=(-5)÷(-1) (第二步)

=-5.   (第三步)

(1)上述解題過程中有兩處錯誤:

第一處是第________,錯誤的原因是__________________________

第二處是第________,錯誤的原因是_______________________

(2)把正確的解題過程寫出來.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,O為坐標原點,四邊形ABCD是菱形,A(-4,4)B點在第一象限,AB=5,ABy軸交于點F,對角線ACy軸于點E.

(1)直接寫出BC點坐標;

(2)動點PC點出發(fā)以每秒1個單位的速度沿折線段C—D—A運動,求EDP的面積y與時間t的關系式

(3)(2)的條件下,是否存在一點P,使APE沿其一邊翻折構成的四邊形是菱形,若存在,求出點P坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一鐵棒欲通過一個直角走廊.如圖,是該鐵棒緊挨著墻角E通過時的兩個特殊位置:當鐵棒位于AB位置時,它與墻面OG所成的角∠ABO51°18;當鐵棒底端B向上滑動1m(BD1m)到達CD位置時,它與墻面OG所成的角∠CDO60°,求鐵棒的長.(參考數(shù)據(jù):sin51°180.780,cos51°180.625,tan51°181.248)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,邊長為2的正方形ABCD的頂點A、B在一個半徑為2的圓上, 頂點C、D在圓內,將正方形ABCD沿圓的內壁作無滑動的滾動.當滾動一周回到原位置時,點C運動的路徑長為 ( )

A. 2 B. (+1) C. (+2) D. (+1)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在長和寬分別是a,b的長方形的四個角都剪去一個邊長為x的正方形,折疊后,做成一無蓋的盒子(單位:cm).

(1)用a,b,x表示紙片剩余部分的面積;

(2)用a,b,x表示盒子的體積;

(3)當a=10,b=8且剪去的每一個小正方形的面積等于4 cm2時,求剪去的每一個正方形的邊長及所做成的盒子的體積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校有A、B兩個閱覽室,甲、乙、丙三名學生各自隨機選擇其中的一個閱覽室閱讀.

(1)下列事件中,是必然事件的為(

A.甲、乙同學都在A閱覽室 B.甲、乙、丙同學中至少兩人在A閱覽室

C.甲、乙同學在同一閱覽室 D.甲、乙、丙同學中至少兩人在同一閱覽室

(2)用畫樹狀圖的方法求甲、乙、丙三名學生在同一閱覽室閱讀的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD為平行四邊形紙片.把紙片ABCD折疊,使點B恰好落在CD邊上,折痕為AF.且AB=10cm、AD=8cm、DE=6cm.

(1)求證:平行四邊形ABCD是矩形;

(2)求BF的長;

(3)求折痕AF長.

查看答案和解析>>

同步練習冊答案