【題目】正方形ABCD的軌道上有兩個點甲與乙,開始時甲在A處,乙在C處,它們沿著正方形軌道順時針同時出發(fā),甲的速度為每秒1 cm,乙的速度為每秒5 cm,已知正方形軌道ABCD的邊長為2 cm,則乙在第2 020次追上甲時的位置在( )
A.AB上B.BC上
C.CD上D.AD上
【答案】D
【解析】
根據(jù)題意列一元一次方程,然后四個循環(huán)為一次即可求得結論.
解:設乙走x秒第一次追上甲.
根據(jù)題意,得
5x-x=4
解得x=1.
∴乙走1秒第一次追上甲,則乙在第1次追上甲時的位置是AB上;
設乙再走y秒第二次追上甲.
根據(jù)題意,得5y-y=8,解得y=2.
∴乙再走2秒第二次追上甲,則乙在第2次追上甲時的位置是BC上;
同理:∴乙再走2秒第三次次追上甲,則乙在第3次追上甲時的位置是CD上;
∴乙再走2秒第四次追上甲,則乙在第4次追上甲時的位置是DA上;
乙在第5次追上甲時的位置又回到AB上;
∴2020÷4=505
∴乙在第2020次追上甲時的位置是AD上.
故選:D.
科目:初中數(shù)學 來源: 題型:
【題目】已知邊長為4的正方形ABCD,頂點A與坐標原點重合,一反比例函數(shù)圖象過頂點C,動點P以每秒1個單位速度從點A出發(fā)沿AB方向運動,動點Q同時以每秒4個單位速度從D點出發(fā)沿正方形的邊DC﹣CB﹣BA方向順時針折線運動,當點P與點Q相遇時停止運動,設點P的運動時間為t.
(1)求出該反比例函數(shù)解析式;
(2)連接PD,當以點Q和正方形的某兩個頂點組成的三角形和△PAD全等時,求點Q的坐標;
(3)用含t的代數(shù)式表示以點Q、P、D為頂點的三角形的面積s,并指出相應t的取值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀下列解題過程:
計算:(-5)÷×20.
解:原式=(-5)÷×20 (第一步)
=(-5)÷(-1) (第二步)
=-5. (第三步)
(1)上述解題過程中有兩處錯誤:
第一處是第________步,錯誤的原因是__________________________;
第二處是第________步,錯誤的原因是_______________________.
(2)把正確的解題過程寫出來.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,O為坐標原點,四邊形ABCD是菱形,A(-4,4),B點在第一象限,AB=5,AB與y軸交于點F,對角線AC交y軸于點E.
(1)直接寫出B點C點坐標;
(2)動點P從C點出發(fā)以每秒1個單位的速度沿折線段C—D—A運動,求△EDP的面積y與時間t的關系式
(3)在(2)的條件下,是否存在一點P,使△APE沿其一邊翻折構成的四邊形是菱形,若存在,求出點P坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一鐵棒欲通過一個直角走廊.如圖,是該鐵棒緊挨著墻角E通過時的兩個特殊位置:當鐵棒位于AB位置時,它與墻面OG所成的角∠ABO51°18′;當鐵棒底端B向上滑動1m(即BD1m)到達CD位置時,它與墻面OG所成的角∠CDO60°,求鐵棒的長.(參考數(shù)據(jù):sin51°18′0.780,cos51°18′0.625,tan51°18′1.248)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,邊長為2的正方形ABCD的頂點A、B在一個半徑為2的圓上, 頂點C、D在圓內,將正方形ABCD沿圓的內壁作無滑動的滾動.當滾動一周回到原位置時,點C運動的路徑長為 ( )
A. 2 B. (+1) C. (+2) D. (+1)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在長和寬分別是a,b的長方形的四個角都剪去一個邊長為x的正方形,折疊后,做成一無蓋的盒子(單位:cm).
(1)用a,b,x表示紙片剩余部分的面積;
(2)用a,b,x表示盒子的體積;
(3)當a=10,b=8且剪去的每一個小正方形的面積等于4 cm2時,求剪去的每一個正方形的邊長及所做成的盒子的體積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校有A、B兩個閱覽室,甲、乙、丙三名學生各自隨機選擇其中的一個閱覽室閱讀.
(1)下列事件中,是必然事件的為( )
A.甲、乙同學都在A閱覽室 B.甲、乙、丙同學中至少兩人在A閱覽室
C.甲、乙同學在同一閱覽室 D.甲、乙、丙同學中至少兩人在同一閱覽室
(2)用畫樹狀圖的方法求甲、乙、丙三名學生在同一閱覽室閱讀的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形ABCD為平行四邊形紙片.把紙片ABCD折疊,使點B恰好落在CD邊上,折痕為AF.且AB=10cm、AD=8cm、DE=6cm.
(1)求證:平行四邊形ABCD是矩形;
(2)求BF的長;
(3)求折痕AF長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com