【題目】如圖,等邊三角形ABC的邊長為6,點E為AC邊上一點,AE=2,作DE⊥AC于點E交AB于點D,點F在BC邊上且BF=BD.連接EF與CD交于點H,則DH的長為( )
A.B. C. D.
【答案】B
【解析】
根據等邊三角形的性質可得∠B=∠A=60°,根據DE⊥AC,BF=BD可得∠AED=90°,根據勾股定理可得EF=4,DC=,再利用三角形相似求出CH,即可得到結果;
∵等邊三角形ABC的邊長為6,DE⊥AC;
∴∠B=∠A=∠C=60°, ∠AED=90°.
∴∠ADE=30°,
∴在Rt△ADE中,
AD=2AE=4,DE=,
又∵BF=BD,
∴BD=DF=BF=6-4=2.
∴EC=CF =4,△EFC為等邊三角形,
∴EF=EC=4,∠EFC=60°=∠B,
∴AB∥EF,
∴∠DEH=∠ADE=30°,可得到∠DEC=90°.
∴,
∵AB∥EF,
∴△CEH∽△CAD,
∴
∴,
∴DH=DC-CH=.
故選B.
科目:初中數學 來源: 題型:
【題目】如圖,某市有一塊長為米,寬為米的長方形地塊,規(guī)劃部門計劃將陰影部分進行綠化,中間將修建一座雕像,左右兩邊修兩條寬為米的道路.().
(1)①試用含的代數式表示綠化的面積是多少平方米?
②假設陰影部分可以拼成一個矩形.請你求出所拼矩形相鄰兩邊的長:如果要使所拼矩形面積最大,求與滿足的關系式;
(2)若,請求出綠化面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】市少年宮為小學生開設了繪畫、音樂、舞蹈和跆拳道四類興趣班,為了解學生對這四類興趣班的喜愛情況,對學生進行了隨機問卷調查(問卷調查表如圖所示),將調查結果整理后繪制了一幅不完整的統(tǒng)計表
興趣班 | 頻數 | 頻率 |
合計 |
請你根據統(tǒng)計表中提供的信息回答下列問題:
(1)統(tǒng)計表中的_____, ;
(2)根據調查結果,請你估計該市名小學生中最喜歡“繪畫”興趣班的人數;
(3)王強和李昊選擇參加興趣班,若王強從三類興趣班中隨機選取一類,李吳從三類興趣班中隨機選取一類,請用畫樹狀圖或列表格的方法,求兩人恰好選中同一類興趣班的概率.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】早在古羅馬時代,傳說亞歷山大城有一位精通數學和物理的學者,名叫海倫.一天,一位羅馬將軍專程去拜訪他,向他請教一個百思不得其解的問題.
將軍每天從軍營A出發(fā),先到河邊飲馬,然后再去河岸同側的軍營B開會,應該怎樣走才能使路程最短?這個問題的答案并不難,據說海倫略加思索就解決了它.從此以后,這個被稱為“將軍飲馬”的問題便流傳至今.大數學家海倫曾用軸對稱的方法巧妙地解決了這個問題.
如圖2,作B關于直線l的對稱點B′,連結AB′與直線l交于點C,點C就是所求的位置.
證明:如圖3,在直線l上另取任一點C′,連結AC′,BC′,B′C′,
∵直線l是點B,B′的對稱軸,點C,C′在l上,
∴CB=CB′,C′B=C′B′,
∴AC+CB=AC+ = .
在△AC′B′中,
∵AB′<AC′+C′B′
∴AC+CB<AC′+C′B′即AC+CB最小.
本問題實際上是利用軸對稱變換的思想,把A,B在直線同側的問題轉化為在直線的兩側,從而可利用“兩點之間線段最短”,即“三角形兩邊之和大于第三邊”的問題加以解決(其中C在AB′與l的交點上,即A、C、B′三點共線).本問題可歸納為“求定直線上一動點與直線外兩定點的距離和的最小值”的問題的數學模型.
1.簡單應用
(1)如圖4,在等邊△ABC中,AB=6,AD⊥BC,E是AC的中點,M是AD上的一點,求EM+MC的最小值
借助上面的模型,由等邊三角形的軸對稱性可知,B與C關于直線AD對稱,連結BM,EM+MC的最小值就是線段 的長度,則EM+MC的最小值是 ;
(2)如圖5,在四邊形ABCD中,∠BAD=130°,∠B=∠D=90°,在BC,CD上分別找一點M、N當△AMN周長最小時,∠AMN+∠ANM= °.
2.拓展應用
如圖6,是一個港灣,港灣兩岸有A、B兩個碼頭,∠AOB=30°,OA=1千米,OB=2千米,現有一艘貨船從碼頭A出發(fā),根據計劃,貨船應先?OB岸C處裝貨,再?OA岸D處裝貨,最后到達碼頭B.怎樣安排兩岸的裝貨地點,使貨船行駛的水路最短?請畫出最短路線并求出最短路程.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】六一前夕,某幼兒園園長到廠家選購A、B兩種品牌的兒童服裝,每套A品牌服裝進價比B品牌服裝每套進價多25元,用2000元購進A種服裝數量是用750元購進B種服裝數量的2倍.
求A、B兩種品牌服裝每套進價分別為多少元?
該服裝A品牌每套售價為130元,B品牌每套售價為95元,服裝店老板決定,購進B品牌服裝的數量比購進A品牌服裝的數量的2倍還多4套,兩種服裝全部售出后,可使總的獲利超過1200元,則最少購進A品牌的服裝多少套?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】求證:對角線互相垂直圓內接四邊形,自對角線的交點向一邊作垂線,其延長線必平分對邊.
要求:(1)在給出的圓內接四邊形作出PE⊥BC于點E,并延長EP與AD交于點F,不寫作法,保留作圖痕跡
(2)利用(1)中所作的圖形寫出已知、求證和證明過程.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】自從開展“線上學習”活動后,某中學體育老師為了解該校九年級一班學生在家進行體育鍛煉情況.決定開設:毽子;:籃球;:跑步;:跳繩四種活動項目,為了解學生最喜歡哪一種活動項目,進行隨機電話訪談部分學生,并將調查結果繪制成如下統(tǒng)計圖,請結合圖中信息解答下列問題:
(1)該校本次調查中,共調查了多少名學生?
(2)請將兩個統(tǒng)計圖補充完整;
(3)在本次調查的學生中隨機抽取1人,則這個人喜歡“跳繩”的概率有多大?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】下面是十堰市的三個旅游景點:丹江口的武當山、房縣的野人洞、鄖西縣的五龍河的部分門票價格表.某單位在國慶長假前期給每人購買了一張門票,現將購買門票的情況繪制成如圖所示的柱狀統(tǒng)計圖.
景點 | 標價(元/張) |
武當山 | 200 |
野人洞 | |
五龍河 | 80 |
請依據上表、圖回答下列問題:
(1)去武當山旅游的門票有________張,購買去野人洞旅游的門票占所有門票張數的____________.
(2)若該單位采取隨機抽取的方式把門票分配給員工,在看不到門票的前提下,每人抽取一張(所有門票形狀、大小、顏色等完全相同且充分洗勻).問員工小紅抽取去武當山的門票的概率是___________.
(3)若購買去五龍河的總款數占全部款數的.試求出每張野人洞門票的價格.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】“孝敬”、“勤勞”是中華民族的傳統(tǒng)美德,疫情期間同學們在家里經常幫助父母做一些力所能及的家務.學校隨機調查了部分同學疫情期間在家做家務的總時間,設被調查的每位同學疫情期間在家做家務的總時間為小時,現將做家務的總時間分為五個類別:,,,,.并將調查結果繪制成如下兩幅不完整的統(tǒng)計圖:
請你根據統(tǒng)計圖中提供的信息回答下列問題:
(1)本次共調查了多少名學生?
(2)通過計算補全條形統(tǒng)計圖;
(3)若該校共有1000名學生,請你估計該校疫情期間在家做家務的總時間不低于20小時的學生有多少名.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com