分析 根據(jù)點(diǎn)C在直線BD上,分兩種情況進(jìn)行討論:①當(dāng)點(diǎn)C在線段BD上時(shí);②當(dāng)C在BD的延長線上時(shí),分別根據(jù)平行線分線段成比例定理,求得AE與AC的數(shù)量關(guān)系,最后根據(jù)AE的長求得AC長.
解答 解:分兩種情況:
①如圖所示,當(dāng)點(diǎn)C在線段BD上時(shí),過B作BF⊥AD于F,過D作DE⊥AD交AC的延長線于E,
Rt△ADE中,cos∠CAD=$\frac{AD}{AE}$=$\frac{5}{6}$,即$\frac{6}{AE}$=$\frac{5}{6}$,
∴AE=$\frac{36}{5}$,
∵BD=3CD,DE∥BF,
∴$\frac{CE}{CG}$=$\frac{CD}{CB}$=$\frac{1}{2}$,
設(shè)CE=x,則CG=2x,GE=3x,
∵AB=BD,BF⊥AD,
∴AF=FD,
∴AG=GE=3x,
∴AE=6x,AC=5x,
∴AC=$\frac{5}{6}$AE=$\frac{5}{6}$×$\frac{36}{5}$=6;
②如圖所示,當(dāng)C在BD的延長線上時(shí),過B作BF⊥AD于F,過C作CE⊥AD交AD的延長線于E,
∵AB=BD,BF⊥AD,
∴AF=FD=$\frac{1}{2}$AD=3,
∵CE∥BF,BD=3CD,
∴$\frac{DE}{DF}$=$\frac{DC}{DB}$=$\frac{1}{3}$,
∴$\frac{DE}{3}$=$\frac{1}{3}$,即DE=1,
∴AE=6+1=7,
∵Rt△ACE中,cos∠CAD=$\frac{5}{6}$,
∴$\frac{AE}{AC}$=$\frac{5}{6}$,即$\frac{7}{AC}$=$\frac{5}{6}$,
∴AC=$\frac{42}{5}$.
綜上所述,AC的長為6或$\frac{42}{5}$.
故答案為:6或$\frac{42}{5}$.
點(diǎn)評(píng) 本題主要考查了解直角三角形,等腰三角形的性質(zhì)以及平行線分線段成比例定理的綜合應(yīng)用,解決問題的關(guān)鍵是畫出圖形進(jìn)行分類討論,依據(jù)平行線分線段成比例定理進(jìn)行求解.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 直角三角形 | B. | 銳角三角形 | C. | 鈍角三角形 | D. | 等邊三角形 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com