【題目】某市準備將一批帳篷和食品送往扶貧區(qū).已知帳篷和食品共320件,且?guī)づ癖仁称范?/span>80件.
(1)直接寫出帳篷有 件,食品有 件;
(2)現計劃租用A、B兩種貨車共8輛,一次性將這批物資全部送到扶貧區(qū),已知兩種車可裝帳篷和食品的件數以及每輛貨車所需付運費情況如表,問:共有幾種租車的方案?最少運費是多少?
帳篷(件) | 食品(件) | 每輛需付運費(元) | |
A種貨車 | 40 | 10 | 780 |
B種貨車 | 20 | 20 | 700 |
【答案】(1)200,120;(2)方案見解析,最少運費是5760元
【解析】
(1)有兩個等量關系:帳篷件數+食品件數=320,帳篷件數-食品件數=80,直接設未知數,列出一元一次方程,求出解;
(2)先由等量關系得到一元一次不等式組,求出解集,再根據實際含義確定方案;分別計算每種方案的運費,然后比較得出結果.
(1)設食品x件,則帳篷(x+80)件,由題意,得
x+(x+80)=320,
解得:x=120.
則帳篷有120+80=200件.
故答案為200,120;
(2)設租用A種貨車a輛,則B種貨車(8﹣a)輛,由題意,得
,
解得:2≤a≤4.
∵a為整數,
∴a=2,3,4.
∴B種貨車為:6,5,4.
∴租車方案有3種:
方案一:A車2輛,B車6輛;
方案二:A車3輛,B車5輛;
方案三:A車4輛,B車4輛;
3種方案的運費分別為:
①2×780+6×700=5760(元);
②3×780+5×700=5840(元);
③4×780+4×700=5920(元).
則方案①運費最少,最少運費是5760元.
科目:初中數學 來源: 題型:
【題目】已知拋物線y=x2+bx+c與x軸交于A,B兩點,與y軸交于點C,O是坐標原點,點A的坐標是(﹣1,0),點C的坐標是(0,﹣3)
(1)求拋物線的函數表達式.
(2)求直線BC的函數表達式和∠ABC的度數.
(3)P為線段BC上一點,連接AC,AP,若∠ACB=∠PAB,求點P的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,Rt△ABC中,∠C=90°,AC=,tanB=,半徑為2的⊙C,分別交AC,BC于點D,E,得到 .
(1)求證:AB為⊙C的切線;
(2)求圖中陰影部分的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知等腰△ABC中,AB=AC,∠BAC=120°,AD⊥BC于點D,點P是BA延長線上一點,點O是線段AD上一點,OP=OC,下面的結論:①∠APO+∠DCO=30°;②△OPC是等邊三角形;③AC=AO+AP;④S△ABC=S四邊形AOCP , 其中正確的個數是( )
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在下列解答中,填寫適當的理由或數學式:
(1)∵ ∠ABD=∠CDB, ( 已知 )
∴ ∥ . ( )
(2)∵ ∠ADC+∠DCB=180°, ( 已知 )
∴ ∥ . ( )
(3)∵ AD∥BE, ( 已知 )
∴ ∠DCE=∠ . ( )
(4)∵ ∥ , ( 已知 )
∴ ∠BAE=∠CFE. ( )
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某校招聘一名數學老師,對應聘者分別進行了教學能力、科研能力和組織能力三項測試,其中甲、乙兩名應聘者的成績如右表:(單位:分)
教學能力 | 科研能力 | 組織能力 | |
甲 | 81 | 85 | 86 |
乙 | 92 | 80 | 74 |
(1)若根據三項測試的平均成績在甲、乙兩人中錄用一人,那么誰將被錄用?
(2)根據實際需要,學校將教學、科研和組織能力三項測試得分按 5:3:2 的比確定每人的最后成績,若按此成績在甲、乙兩人中錄用一人,誰將被錄用?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,∠E=50°,∠BAC=50°,∠D=110°,求∠ABD的度數.
請完善解答過程,并在括號內填寫相應的理論依據.
解:∵∠E=50°,∠BAC=50°,(已知)
∴∠E= (等量代換)
∴ ∥ .( )
∴∠ABD+∠D=180°.( )
∴∠D=110°,(已知)
∴∠ABD=70°.(等式的性質)
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com