在同一平面內,△ABC和△ABD如圖①放置,其中AB=BD.
小明做了如下操作:
將△ABC繞著邊AC的中點旋轉180°得到△CEA,將△ABD繞著邊AD的中點旋轉180°得到△DFA,如圖②,請完成下列問題:
(1)試猜想四邊形ABDF是什么特殊四邊形,并說明理由;
(2)連接EF,CD,如圖③,求證:四邊形CDEF是平行四邊形.
(1)四邊形ABDF是菱形;理由見解析;(2)證明見解析.

試題分析:(1)根旋轉的性質得AB=DF,BD=FA,由于AB=BD,所以AB=BD=DF=FA,則可根據(jù)菱形的判定方法得到四邊形ABDF是菱形;
(2)由于四邊形ABDF是菱形,則AB∥DF,且AB=DF,再根據(jù)旋轉的性質易得四邊形ABCE為平行四邊形,根據(jù)判死刑四邊形的性質得AB∥CE,且AB=CE,所以CE∥FD,CE=FD,所以可判斷四邊形CDEF是平行四邊形.
試題解析:(1)解:四邊形ABDF是菱形.理由如下:
∵△ABD繞著邊AD的中點旋轉180°得到△DFA,
∴AB=DF,BD=FA,
∵AB=BD,
∴AB=BD=DF=FA,
∴四邊形ABDF是菱形;
(2)證明:∵四邊形ABDF是菱形,
∴AB∥DF,且AB=DF,
∵△ABC繞著邊AC的中點旋轉180°得到△CEA,
∴AB=CE,BC=EA,
∴四邊形ABCE為平行四邊形,
∴AB∥CE,且AB=CE,
∴CE∥FD,CE=FD,
∴四邊形CDEF是平行四邊形.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:解答題

在正方形外側作直線,點關于直線的對稱點為,連接,其中交直線于點
(1)依題意補全圖1;
(2)若,求的度數(shù);
(3)如圖2,若,用等式表示線段之間的數(shù)量關系,并證明.
   

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

我們知道:平行四邊形的面積=(底邊)×(這條底邊上的高).
如圖,四邊形ABCD都是平行四邊形,ADBC,ABCD,設它的面積為S.
(1)如圖①,點M為AD上任意一點,則△BCM的面積S1=______S,
△BCD的面積S2與△BCM的面積S1的數(shù)量關系是______.
(2)如圖②,設AC、BD交于點O,則O為AC、BD的中點,試探究△AOB的面積與△COD的面積之和S3與平行四邊形的面積S的數(shù)量關系.
(3)如圖③,點P為平行四邊形ABCD內任意一點時,記△PAB的面積為Sˊ,△PCD的面積為S〞,平行四邊形ABCD的面積為S,猜想得Sˊ、S〞的和與S的數(shù)量關系式為______.
(4)如圖④,已知點P為平行四邊形ABCD內任意一點,△PAB的面積為3,△PBC的面積為7,求△PBD的面積.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,?ABCD,E是BA延長線上一點,AB=AE,連接CE交AD于點F,若CF平分∠BCD,AB=3,則BC的長為______.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在?ABCD中,∠ABC=5∠A,過點B作BE⊥DC交AD的延長線于點E,O是垂足,且DE=DA=4cm,
求:(1)?ABCD的周長;
(2)四邊形BDEC的周長和面積(結果可保留根號)

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,點G是正方形ABCD對角線CA的延長線上任意一點,以線段AG為邊作一個正方形AEFG,線段EB和GD相交于點H.若AB=,AG=1,則EB=  

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,邊長為1的正方形ABCD繞點A逆時針旋轉45°后得到正方形AB1C1D1,邊B1C1與CD交于點O,則四邊形AB1OD的面積是( 。
A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在矩形ABCD中,點E為AB的中點,EF⊥EC交AD于點F,連接CF(AD>AE),下列結論:
①∠AEF=∠BCE;
②AF+BC>CF;
③SCEF=SEAF+SCBE;
④若=,則△CEF≌△CDF.
其中正確的結論是     .(填寫所有正確結論的序號)

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

下列說法不正確的是(  )
A.有兩組對邊分別平行的四邊形是平行四邊形
B.平行四邊形的對角線互相平分
C.平行四邊形的對角互補,鄰角相等
D.平行四邊形的對邊平行且相等

查看答案和解析>>

同步練習冊答案