【題目】已知A、B、C三地在同一條路上,A地在B地的正南方3千米處,甲、乙兩人分別從A、B兩地向正北方向的目的地C勻速直行,他們分別和A地的距離s(千米)與所用的時(shí)間t(小時(shí))的函數(shù)關(guān)系如圖所示.
(1)圖中的線段l1是 (填“甲”或“乙”)的函數(shù)圖象,C地在B地的正北方向 千米處;
(2)誰(shuí)先到達(dá)C地?并求出甲乙兩人到達(dá)C地的時(shí)間差;
(3)如果速度慢的人在兩人相遇后立刻提速,并且比先到者晚1小時(shí)到達(dá)C地,求他提速后的速度.
【答案】(1)乙;3;(2)甲先到達(dá),到達(dá)目的地的時(shí)間差為小時(shí);(3)速度慢的人提速后的速度為千米/小時(shí).
【解析】分析:
(1)根據(jù)題意結(jié)合所給函數(shù)圖象進(jìn)行判斷即可;
(2)由所給函數(shù)圖象中的信息先求出二人所對(duì)應(yīng)的函數(shù)解析式,再由解析式結(jié)合圖中信息求出二人到達(dá)C地的時(shí)間并進(jìn)行比較、判斷即可得到本問(wèn)答案;
(3)根據(jù)圖象中的信息結(jié)合(2)中的結(jié)論進(jìn)行解答即可.
詳解:
(1)由題意結(jié)合圖象中的信息可知:圖中線段l1是乙的圖象;C地在B地的正北方6-3=3(千米)處.
(2)甲先到達(dá).
設(shè)甲的函數(shù)解析式為s=kt,則有4=t,
∴s=4t.
∴當(dāng)s=6時(shí),t=.
設(shè)乙的函數(shù)解析式為s=nt+3,則有4=n+3,即n=1.
∴乙的函數(shù)解析式為s=t+3.
∴當(dāng)s=6時(shí),t=3.
∴甲、乙到達(dá)目的地的時(shí)間差為:(小時(shí)).
(3)設(shè)提速后乙的速度為v千米/小時(shí),
∵相遇處距離A地4千米,而C地距A地6千米,
∴相遇后需行2千米.
又∵原來(lái)相遇后乙行2小時(shí)才到達(dá)C地,
∴乙提速后2千米應(yīng)用時(shí)1.5小時(shí).
即,解得: ,
答:速度慢的人提速后的速度為千米/小時(shí).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知數(shù)軸上點(diǎn)A表示的數(shù)為6,B是數(shù)軸上一點(diǎn),且AB=10,動(dòng)點(diǎn)P從點(diǎn)A出發(fā),以每秒6個(gè)單位長(zhǎng)度的速度沿?cái)?shù)軸向左勻速運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t(t>0)秒,
(1)寫(xiě)出數(shù)軸上點(diǎn)B所表示的數(shù) ;
(2)點(diǎn)P所表示的數(shù) ;(用含t的代數(shù)式表示);
(3)M是AP的中點(diǎn),N為PB的中點(diǎn),點(diǎn)P在運(yùn)動(dòng)的過(guò)程中,線段MN的長(zhǎng)度是否發(fā)生變化?若變化,說(shuō)明理由;若不變,請(qǐng)你畫(huà)出圖形,并求出線段MN的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某品牌T恤專營(yíng)批發(fā)店的T恤衫在進(jìn)價(jià)基礎(chǔ)上加價(jià)m%銷售,每月銷售額9萬(wàn)元,該店每月固定支出1.7萬(wàn)元,進(jìn)貨時(shí)還需付進(jìn)價(jià)5%的其它費(fèi)用.
(1)為保證每月有1萬(wàn)元的利潤(rùn),m的最小值是多少?(月利潤(rùn)=總銷售額-總進(jìn)價(jià)-固定支
出-其它費(fèi)用)
(2)經(jīng)市場(chǎng)調(diào)研發(fā)現(xiàn),售價(jià)每降低1%,銷售量將提高6%,該店決定自下月起降價(jià)以促進(jìn)銷售,已知每件T恤原銷售價(jià)為60元,問(wèn):在m取(1)中的最小值且所進(jìn)T恤當(dāng)月能夠全部銷售完的情況下,銷售價(jià)調(diào)整為多少時(shí)能獲得最大利潤(rùn),最大利潤(rùn)是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】探索代數(shù)式與代數(shù)式的關(guān)系.
(1)當(dāng),時(shí),分別計(jì)算兩個(gè)代數(shù)式的值.
(2)當(dāng),時(shí),分別計(jì)算兩個(gè)代數(shù)式的值.
(3)你發(fā)現(xiàn)了什么規(guī)律?
(4)利用你發(fā)現(xiàn)的規(guī)律計(jì)算:20182-2×2018×2019+20192.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)計(jì)算:
(2)計(jì)算:(2+)(2﹣)+÷+
(3)在ABCD中,過(guò)點(diǎn)D作DE⊥AB于點(diǎn)E,點(diǎn)F在CD上且DF=BE,連接AF,BF.
①求證:四邊形BFDE是矩形;
②若CF=6,BF=8,AF平分∠DAB,則DF= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD為菱形,E為對(duì)角線AC上的一個(gè)動(dòng)點(diǎn),連結(jié)DE并延長(zhǎng)交射線AB于點(diǎn)F,連結(jié)BE.
(1)求證:∠AFD=∠EBC;
(2)若∠DAB=90°,當(dāng)△BEF為等腰三角形時(shí),求∠EFB的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知一次函數(shù)y1=k1x+b的圖象與x軸、y軸分別交于A、B兩點(diǎn),與反比例函數(shù)y2=的圖象分別交于C、D兩點(diǎn),點(diǎn)D的坐標(biāo)為(2,-3),點(diǎn)B是線段AD的中點(diǎn).則不等式 k1x+b —>0的解集是___________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】今年四月份,某校在孝感市爭(zhēng)創(chuàng)“全國(guó)文明城市” 活動(dòng)中,組織全體學(xué)生參加了“弘揚(yáng)孝感文化,爭(zhēng)做文明學(xué)生”知識(shí)競(jìng)賽,賽后隨機(jī)抽取了部分參賽學(xué)生的成績(jī),按得分劃分成 六個(gè)等級(jí),并繪制成如下兩幅不完整的統(tǒng)計(jì)圖表.
請(qǐng)根據(jù)圖表提供的信息,解答下列問(wèn)題:
(1)本次抽樣調(diào)查樣本容量為 ,表中: , ;扇形統(tǒng)計(jì)圖中, 等級(jí)對(duì)應(yīng)的圓心角 等于 度;(4分=1分+1分+1分)
(2)該校決定從本次抽取的 等級(jí)學(xué)生(記為甲、乙、丙、丁)中,隨機(jī)選擇 名成為學(xué)校文明宣講志愿者,請(qǐng)你用列表法或畫(huà)樹(shù)狀圖的方法,求恰好抽到甲和乙的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀下列解題過(guò)程:已知、、為△ABC的三邊,且滿足,
試判斷△ABC的形狀.
解:∵ 、佟
∴ ②
∴ ③
∴△ABC為直角三角形.
問(wèn):(1)上述解題過(guò)程,從哪一步開(kāi)始出現(xiàn)錯(cuò)誤?請(qǐng)寫(xiě)出該步的代號(hào)________;
。2)錯(cuò)誤的原因是____________________________;
(3)本題的正確結(jié)論是_________________________.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com