【題目】如圖,平行四邊形ABCD中,AD>AB
(1)分別作∠ABC和∠BCD的平分線,交AD于E、F.
(2)線段AF與DE相等嗎?請證明.
【答案】(1)詳見解析;(2)AF與DE相等,證明見解析.
【解析】
(1)根據(jù)角平分線的作法作出∠ABC和∠BCD的平分線即可;
(2)根據(jù)平行四邊形的性質(zhì)可得:AB=CD,AD∥BC,根據(jù)平行線性質(zhì)和角平分線性質(zhì)求出∠ABE=∠AEB,推出AB=AE,同理求出DF=CD,即可證明AE=DF,故AF=DE.
(1)如圖:BE、CF即∠ABC和∠BCD的平分線,
(2)解:AF與DE相等.
證明:∵四邊形ABCD是平行四邊形,
∴AB=CD,AD∥BC,
∴∠AEB=∠EBC,
∵BE平分∠ABC,
∴∠ABE=∠CBE,
∴∠ABE=∠AEB,
∴AB=AE,
同理可得:DF=CD,
∴AE=DF,
即AF+EF=DE+EF,
∴AF=DE.
故答案為:(1)詳見解析;(2)AF與DE相等,證明見解析.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在矩形紙片ABCD中,AB=6,BC=10,點E在CD上,將△BCE沿BE折疊,點C恰落在邊AD上的點F處;點G在AF上,將△ABG沿BG折疊,點A恰落在線段BF上的點H處,有下列結(jié)論:
①∠EBG=45°;②△DEF∽△ABG;③S△ABG=S△FGH;④AG+DF=FG.
其中正確的是__.(把所有正確結(jié)論的序號都選上)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系xOy中,點P的坐標為(x1,y1),點Q的坐標為(x2,y2),且x1≠x2,y1≠y2.若P,Q為某個矩形的兩個頂點,且該矩形的邊均與某條坐標軸垂直,則稱該矩形為點P,Q的“相關(guān)矩形”,下圖①為點P,Q的“相關(guān)矩形”的示意圖.
已知點A的坐標為(1,0),
(1)若點B的坐標為(3,1),求點A,B的“相關(guān)矩形”的面積;
(2)點C在直線x=3上,若點A,C的“相關(guān)矩形”為正方形,求直線AC的表達式;
(3)若點D的坐標為(4,2),將直線y=2x+b平移,當它與點A,D的“相關(guān)矩形”沒有公共點時,求出b的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,過平行四邊形ABCD對角線交點O的直線交AD于E,交BC于F,若AB=5,BC=6,OE=2,那么四邊形EFCD周長是( )
A. 16B. 15C. 14D. 13
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一副三角板如圖放置,點C在FD的延長線上,AB∥CF,∠F=∠ACB=90°,∠E=30°,∠A=45°,AC=12,試求CD的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,兩根旗桿間相距12m,某人從點B沿BA走向點A,一段時間后他到達點M,此時他仰望旗桿的頂點C和D,兩次視線的夾角為90°,且CM=DM,已知旗桿AC的高為3m,該人的運動速度為1m/s,則這個人運動到點M所用時間是_______________
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,某建筑物BC頂部有一旗桿AB,且點A、B、C在同一條直線上,小紅在D處觀測旗桿頂部A的仰角為47°,觀測旗桿底部B的仰角為42°已知點D到地面的距離DE為1.56m,EC=21m,求旗桿AB的高度和建筑物BC的高度(結(jié)果保留小數(shù)后一位).(參考數(shù)據(jù):tan47°≈1.07,tan42°≈0.90)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在長方形ABCD中,將△ABC沿AC對折至△AEC位置,CE與AD交于點F.
(1)試說明:AF=FC;(2)如果AB=12,BC=16,求AF的長
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:關(guān)于的方程2x2+kx-1=0 .
(1)求證:方程有兩個不相等的實數(shù)根;
(2)若方程的一個根是-1,求另一個根及k值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com