【題目】為了促進學(xué)生多樣化發(fā)展,某校組織開展了社團活動,分別設(shè)置了體育類、藝術(shù)類、文學(xué)類及其它類社團(要求人人參與社團,每人只能選擇一項).為了解學(xué)生喜愛哪種社團活動,學(xué)校做了一次抽樣調(diào)查.根據(jù)收集到的數(shù)據(jù),繪制成如下兩幅不完整的統(tǒng)計圖, 請根據(jù)圖中提供的信息,完成下列問題:
(1)此次共調(diào)查了 人;
(2)求文學(xué)社團在扇形統(tǒng)計圖中所占圓心角為 度;
(3)請將條形統(tǒng)計圖補充完整;
(4)若該校有 1500 名學(xué)生,請估計喜歡體育類社團的學(xué)生有多少人?
【答案】(1)200人;(2)108°;(3)詳見解析;(4)600人.
【解析】
(1)根據(jù)喜歡體育類的人數(shù)和所占百分比可求出總?cè)藬?shù);
(2)根據(jù)喜歡文學(xué)類的人數(shù)算出所占百分比,乘以360°即可求出所占圓心角度數(shù);
(3)求出喜歡藝術(shù)類的人數(shù)和其他的人數(shù),補全統(tǒng)計圖即可;
(4)用樣本估計整體計算即可.
(1)由條形圖可知喜歡體育的人有80人,占總?cè)藬?shù)的40%,
∴80÷40%=200(人).
∴此次共調(diào)查200人.
(2)×360°=108°.
∴文學(xué)社團在扇形統(tǒng)計圖中所占圓心角的度108°.
(3)
喜歡藝術(shù)類人數(shù):200×20%=40(人),其他的人數(shù)=200-80-60-40=20(人)
補全統(tǒng)計圖如圖,
(4)1500×40%=600(人).
∴估計該校喜歡體育類社團的學(xué)生有600人.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知△ABC的三個頂點的坐標(biāo)分別為A(﹣5,0)、B(﹣2,3)、C(﹣1,0)
(1)畫出△ABC向下平移3個單位的△A1B1C1;
(2)將△A1B1C1繞原點O旋轉(zhuǎn)180°,畫出旋轉(zhuǎn)后的△A2B2C2;
(3)在(2)中,線段A1B1 掃過的面積為 .(設(shè)圖中小正方的邊長為1個單位長度)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)(操作發(fā)現(xiàn))
如圖 1,在邊長為 1 個單位長度的小正方形組成的網(wǎng)格中,ABC 的三個頂點均在格點上.現(xiàn)將ABC 繞點 A 按順時針方向旋轉(zhuǎn) 90°,點 B 的對應(yīng)點為 B′,點 C 的對應(yīng)點為 C′, 連接 BB′,如圖所示則∠AB′B= .
(2)(解決問題)
如圖 2,在等邊ABC 內(nèi)有一點 P,且 PA=2,PB= ,PC=1,如果將△BPC 繞點 B 順時針旋轉(zhuǎn) 60°得出△ABP′,求∠BPC 的度數(shù)和 PP′的長;
(3)(靈活運用)
如圖 3,將(2)題中“在等邊ABC 內(nèi)有一點 P 改為“在等腰直角三角形 ABC 內(nèi)有一點P”,且 BA=BC,PA=6,BP=4,PC=2,求∠BPC 的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AB⊥BC于點B,CD⊥BC于點C,AB=4,CD=6,BC=14,P為BC邊上一點,試問BP為何值時,以A,B,P為頂點的三角形與以P,C,D為頂點的三角形相似?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】△ABC 在平面直角坐標(biāo)系中的位置如圖所示, 其中每個小正方形的邊長為1個單位長度.
(1)△ABC 關(guān)于原點 O 的中心對稱圖形為△A1B1C1,寫出點 A 的對應(yīng)點 A1 的坐標(biāo) ;
(2)畫出將△ABC 繞點O 順時針旋轉(zhuǎn) 90°得到的△A2B2C2;
(3)若 P(a,b)為△ABC 邊上一點,則在△A2B2C2 中,點 P 對應(yīng)的點 Q 的坐標(biāo)為 .
(4)請直接寫出:以 A、B、C 為頂點的平行四邊形的第四個頂點 D 的坐標(biāo) .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在△ABC中,AB=AC,AD⊥BC,垂足為點D,AN是△ABC外角∠CAM的平分線,CE⊥AN,垂足為點E,
(1)求證:四邊形ADCE為矩形;
(2)當(dāng)△ABC滿足什么條件時,四邊形ADCE是一個正方形?并給出證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,小俊在A處利用高為1.5米的測角儀AB測得樓EF頂部E的仰角為30°,然后前進12米到達C處,又測得樓頂E的仰角為60°,求樓EF的高度.(結(jié)果精確到0.1米)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示, P 是直線 l 外一點,點 A、B、C 在 l 上,且 PB l ,下列說法:① PA、PB、PC 這 3 條線段中, PB 最短;②點 P 到直線 l 的距離是線段 PB 的長;③線段 AB 的長是點 A 到 PB 的距離;④線段 PA 的長是點 P 到直線 l 的距離. 其中正確的是( )
A. ①②③B. ①②④C. ①③④D. ②③④
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com