【題目】如圖,中,,以為邊在外作等邊三角形,過點的垂線,垂足為,與相交于點,連接.

1)說明:;

2)若,是直線上的一點.則當(dāng)在何處時,最小,并求此時的值.

【答案】1)證明見解析;(2)點P在點E處時PB+PC最小,最小值為12cm.

【解析】

1)根據(jù)等邊三角形三合一的性質(zhì)證得DE垂直平分AC;然后由垂直平分線的性質(zhì)可得AE=CE,根據(jù)等邊對等角、直角三角形的兩個銳角互余的性質(zhì)以及等量代換求得∠BCE=B;最后根據(jù)等角對等邊證得CE=BE,可得AE=CE=BE;(2)由DAAB可得∠BAC=30°,可求出AB的長,由(1)知,DE垂直平分AC,故PC=PA;由等量代換知PB+PC=PB+PA;根據(jù)兩點之間線段最短可知,當(dāng)點P、BA在同一直線上最小,所以點PE處時最小.

DFAC,△ACD是等邊三角形,

DF垂直平分AC,

AE=CE

∴∠ACE=CAE,

∵∠ACB=90°,

∴∠ACE+BCE=CAE+B=90°,

∴∠BCE=B,

CE=BE,

AE=CE=BE;

2)∵DAAB,∠DAC=60°,

∴∠BAC=30°

∵∠ACB=90°,BC=6

AB=2BC=12,

由(1)知,DE垂直平分AC,

PC=PA,

PB+PC=PB+PA;

∴當(dāng)PB+PC最小時,即PB+PA最小,

∵點P、BA在同一直線上時,PB+PA最小,

∴點P在點E處時PB+PA最。PB+PC最小,

當(dāng)點PE處時,PB+PC=BE+CE=BE+AE=AB=12cm

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,直線y=x+4與坐標(biāo)軸分別交于A、B兩點,拋物線y=﹣x2+bx+cA、B兩點,點D為線段AB上一動點,過點DCDx軸于點C,交拋物線于點E

1)求拋物線的解析式.

2)求△ABE面積的最大值.

3)連接BE,是否存在點D,使得△DBE和△DAC相似?若存在,求出點D坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,CDDA,DAAB,∠1=∠2.試確定射線DFAE的位置關(guān)系,并說明你的理由.

(1)問題的結(jié)論:DF______AE

(2)證明思路欲證DF______AE,只要證∠3______

(3)證明過程:

證明:∵CDDA,DAAB( )

∴∠CDA=∠DAB______°(垂直定義)

∵∠1=∠2,( )

∴∠CDA-∠1____________(等式的性質(zhì))

即∠3______

DF______AE( , )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,A(0,1),M(3,2),N(4,4).動點P從點A出發(fā),沿y軸以每秒1個單位長的速度向上移動,且過點P的直線l:y=-x+b也隨之移動,設(shè)移動時間為t秒.

(1)當(dāng)t=2時,則AP= ,此時點P的坐標(biāo)是 。

(2)當(dāng)t=3時,求過點P的直線l:y=-x+b的解析式?

(3)當(dāng)直線l:y=-x+b從經(jīng)過點M到點N時,求此時點P向上移動多少秒?

(4)點Q在x軸時,若S△ONQ=8時,請直按寫出點Q的坐標(biāo)是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠C=90°,把ABCAC邊的中點M旋轉(zhuǎn)后得DEF,若直角頂點F恰好落在AB邊上,且DE邊交AB邊于點G,若AC=4,BC=3,則AG的長為(  )

A.B.C.D.1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=x2+bx+c與x軸交于A(﹣1,0),B(3,0)兩點.

(1)求b、c的值;

(2)P為拋物線上的點,且滿足SPAB=8,求P點的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在等邊 ABC中,D是邊AC上一點,連接BD. BCD繞點B逆時針旋轉(zhuǎn)60°得到 BAE,連接ED. BC=10,BD=9,求 AED的周長。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】A、B、C三人玩籃球傳球游戲,游戲規(guī)則是:第一次傳球由A將球隨機(jī)地傳給B,C兩人中的某一人,以后的每一次傳球都是由上次的傳球者隨機(jī)地傳給其他兩人中的某一人.

(1)求兩次傳球后,球恰在B手中的概率;

(2)求三次傳球后,球恰在A手中的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在菱形,E為對角線上一點,F延長線上一點,連接,,,,

1)求證:;

2)若點G的中點,連接,求證:

查看答案和解析>>

同步練習(xí)冊答案