【題目】如圖,在平面直角坐標(biāo)系中,已知A(0,﹣1),B(0,3),點(diǎn)M為第二象限內(nèi)一點(diǎn),且點(diǎn)M的坐標(biāo)為(t,1).
(1)請用含t的式子表示△ABM的面積;
(2)當(dāng)t=﹣2時,在x軸的正半軸上有一點(diǎn)P,使得△BMP的面積與△ABM的面積相等,請求出點(diǎn)P的坐標(biāo).
【答案】(1) (2)點(diǎn)P的坐標(biāo)為(1,0)
【解析】
(1)求出AB,根據(jù)三角形的面積公式求出即可;
(2)求出△BMP的面積,得出方程,求出方程的解即可.
(1)由題意,
點(diǎn)M到AB的距離為
∴
又∵點(diǎn)M為第二象限內(nèi)的點(diǎn),∴
∴
(2)當(dāng)t=-2時,由(1)知
設(shè)點(diǎn)P的坐標(biāo)為(m,0)(m>0)
分別過點(diǎn)M,點(diǎn)P作x軸的垂線,過點(diǎn)B作y軸的垂線,
構(gòu)造如圖所示的長方形
則
由題意,,∴
即點(diǎn)P的坐標(biāo)為(1,0)
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC三個頂點(diǎn)的坐標(biāo)分別為A(1,1),B(4,2),C(3,4).
(1)請畫出△ABC向左平移5個單位長度后得到的△A1B1C1;
(2)請畫出△ABC關(guān)于原點(diǎn)對稱的△A2B2C2;
(3)在x軸上求作一點(diǎn)P,使△PAB的周長最小,請畫出△PAB,并直接寫出P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,射線OA表示的方向是北偏東15°,射線OB表示的方向是北偏西40°.
(1)若∠AOC=∠AOB,則射線OC表示的方向是 ;
(2)若射線OD是射線OB的反向延長線,則射線OD表示的方向是 ;
(3)∠BOD可以看作是由OB繞點(diǎn)O逆時針方向旋轉(zhuǎn)至OD形成的角,作∠BOD的平分線OE;
(4)在(1),(2),(3)的條件下,求∠COE的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明有5張寫著不同數(shù)的卡片,請你分別按要求抽出卡片,寫出符合要求的算式:
(1)從中取出2張卡片,使這2張卡片上的數(shù)的乘積最大;
(2)從中取出2張卡片,使這2張卡片上的數(shù)相除的商最小;
(3)從中取出2張卡片,使這2張卡片上的數(shù)通過有理數(shù)的運(yùn)算后得到的結(jié)果最大;
(4)從中取出4張卡片,使這4張卡片通過有理數(shù)的運(yùn)算后得到的結(jié)果為24.(寫出一種即可)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有8筐白菜,以每筐25千克為標(biāo)準(zhǔn),超過的千克數(shù)記作正數(shù),不足的千克數(shù)記作負(fù)數(shù),稱后的紀(jì)錄如下:
回答下列問題:
(1)這8筐白菜中最接近標(biāo)準(zhǔn)重量的這筐白菜重 ______ 千克;
(2)這8筐白菜中,最重的與最輕的相差______ 千克;
(3)這8筐白菜一共重多少千克?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一個四邊形花壇ABCD,被兩條線段MN,EF分成四個部分,分別種上紅、黃、紫、白四種花卉,種植面積依次是S1,S2,S3,S4,若MN∥AB∥CD,EF∥DA∥CB,則有( )
A. S1=S4 B. S1+S4=S2+S3 C. S1S4=S2S3 D. 都不對
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=4,AD=5,AD,AB,BC分別與⊙O相切于E,F(xiàn),G三點(diǎn),過點(diǎn)D作⊙O的切線BC于點(diǎn)M,切點(diǎn)為N,則DM的長為( )
A.
B.
C.
D.2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】解方程
(1)x2=49
(2)3x2-7x=0
(3)(直接開平方法)
(4)(用配方法)
(5) (因式分解法)
(6)
(7)(x-2)(x-5)=-2
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com