【題目】請從以下兩個小題中任選一個作答若多選,則按所選的第一小題計分

(1)方程x2﹣9x+18=0的兩個根是等腰三角形的底和腰,則這個等腰三角形的周長為_____

(2)如圖所示,兩個等邊三角形,兩個矩形兩個正方形,兩個菱形各成一組,每組中的一個圖形在另一個圖形的內部,對應平行,且對應邊之間的距離都相等,那么兩個圖形不相似的一組是請?zhí)顚懻_答案的序號_____

【答案】15

【解析】

(1)解原方程可得方程的兩根,=3,=6,根據(jù)三角形的性質“兩邊之和大于第三邊, 兩邊之差小于第三邊”,可得腰為6,底邊長為3,可得周長;

(2)根據(jù)圖形相似要求對應角相等、對應邊成比例可得答案.

解:(1)方程因式分解可得:(x-3)(x-6)=0,故原方程的解為=3,=6,

兩個根是等腰三角形的底和腰, 根據(jù)構成三角形的條件“兩邊之和大于第三邊, 兩邊之差小于第三邊”,

可得等腰三角形的腰為6, 底邊長為3, 所以這個等腰三角形的周長為6+6+3=15,

故本題正確答案為15.

(2)圖形相似即要求對應角相等、對應邊成比例,

等邊三角形的三個內角都是60,三條邊都相等,故①中的圖形相似;

矩形的四個內角都是90,對邊相等,所以對應邊不一定成比例,故②中的圖形不一定相似;

正方形的四個內角都是90,四條邊都相等,故③中的圖形相似;

菱形的對角相等, 四條邊都相等, 故④中的圖形相似;

故答案為:②.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】為了解學生的藝術特長發(fā)展情況,某校音樂組決定圍繞在舞蹈、樂器、聲樂、戲曲、其他活動項目中,你最喜歡哪一項活動(每人只限一項)的問題,在全校范圍內隨機抽取部分學生進行問卷調查,并將調查結果繪制成如下兩幅不完整的統(tǒng)計圖.

請你根據(jù)統(tǒng)計圖解答下列問題:

(1)在這次調查中一共抽查了__________名學生,其中,喜歡舞蹈活動項目的人數(shù)占抽查總人數(shù)的百分比為__________,喜歡戲曲活動項目的人數(shù)是__________人;

(2)若在舞蹈、樂器、聲樂、戲曲活動項目任選兩項設立課外興趣小組,請用列表或畫樹狀圖的方法求恰好選中舞蹈、聲樂這兩項活動的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,將等邊△ABC繞點C順時針旋轉120°得到△EDC,連接ADBD.則下列結論:

①AC=AD;②BD⊥AC四邊形ACED是菱形.

其中正確的個數(shù)是( )

A0 B1 C2 D3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】問題探究

(1)如圖①,已知正方形ABCD的邊長為4.點MN分別是邊BC、CD上兩點,且BMCN,連接AMBN,交于點P.猜想AMBN的位置關系,并證明你的結論.

(2)如圖②,已知正方形ABCD的邊長為4.點MN分別從點B、C同時出發(fā),以相同的速度沿BC、CD方向向終點CD運動.連接AMBN,交于點P,求APB周長的最大值;

問題解決

(3)如圖③,AC為邊長為2的菱形ABCD的對角線,∠ABC=60°.點MN分別從點BC同時出發(fā),以相同的速度沿BC、CA向終點CA運動.連接AMBN,交于點P.求APB周長的最大值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】大潤發(fā)超市在銷售某種進貨價為20元/件的商品時,以30元/件售出,每天能售出100件.調查表明:這種商品的售價每上漲1元/件,其銷售量就將減少2件.

(1)為了實現(xiàn)每天1600元的銷售利潤,超市應將這種商品的售價定為多少?

(2)設每件商品的售價為x元,超市所獲利潤為y元.

①求yx之間的函數(shù)關系式;

②物價局規(guī)定該商品的售價不能超過40元/件,超市為了獲得最大的利潤,應將該商品售價定為多少?最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知菱形ABCD的對角線相交于點O,延長AB至點E,使BE=AB,連接CE.

(1)求證:BD=EC;

(2)若∠E=50°,求∠BAO的大。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小明和小剛用如圖所示的兩個轉盤做配紫色游戲,游戲規(guī)則是:分別旋轉兩個轉盤,若其中一個轉盤轉出了紅色,另一個轉出了藍色則可以配成紫色.此時小剛得1分,否則小明得1分.這個游戲規(guī)則對雙方公平嗎?請說明理由.若你認為不公平,如何修改規(guī)則才能使游戲對雙方公平?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校九年級一班數(shù)學調研考試成績繪制成頻數(shù)分布直方圖,如圖(得分取整數(shù)).請根據(jù)所給信息解答下列問題:

(1)這個班有多少人參加了本次數(shù)學調研考試?

(2)60.5~70.5分數(shù)段的頻數(shù)和頻率各是多少?

(3)請你根據(jù)統(tǒng)計圖,提出一個與(1),(2)不同的問題,并給出解答.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線y=﹣2x+3x軸交于點C,與y軸交于點B,拋物線yax2+x+c經過B、C兩點.

(1)求拋物線的解析式;

(2)如圖,點E是直線BC上方拋物線上的一動點,當△BEC面積最大時,請求出點E的坐標和△BEC面積的最大值?

(3)(2)的結論下,過點Ey軸的平行線交直線BC于點M,連接AM,點Q是拋物線對稱軸上的動點,在拋物線上是否存在點P,使得以P、Q、A、M為頂點的四邊形是平行四邊形?如果存在,請直接寫出點P的坐標;如果不存在,請說明理由.

查看答案和解析>>

同步練習冊答案