【題目】如圖,已知菱形ABCD的對(duì)角線相交于點(diǎn)O,延長(zhǎng)AB至點(diǎn)E,使BE=AB,連接CE.

(1)求證:BD=EC;

(2)若∠E=50°,求∠BAO的大。

【答案】(1)證明見(jiàn)解析(2)40°

【解析】(1)證明:∵四邊形ABCD是菱形,∴AB=CD,AB∥CD。

又∵BE=AB,∴BE=CD,BE∥CD!嗨倪呅蜝ECD是平行四邊形。

∴BD=EC。

(2)解:∵四邊形BECD是平行四邊形,∴BD∥CE,∴∠ABO=∠E=50°。

又∵四邊形ABCD是菱形,∴AC丄BD!唷螧AO=90°﹣∠ABO=40°

(1)根據(jù)菱形的對(duì)邊平行且相等可得AB=CD,AB∥CD,然后證明得到BE=CD,BE∥CD,從而證明四邊形BECD是平行四邊形,再根據(jù)平行四邊形的對(duì)邊相等即可得證。

(2)根據(jù)兩直線平行,同位角相等求出∠ABO的度數(shù),再根據(jù)菱形的對(duì)角線互相垂直可得AC⊥BD,然后根據(jù)直角三角形兩銳角互余計(jì)算即可得解。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,拋物線y=ax2+bx+ 經(jīng)過(guò)A(1,0),B(7,0)兩點(diǎn),交y軸于D點(diǎn),以AB為邊在x軸上方作等邊三角形ABC.

(1)求拋物線的解析式;
(2)在x軸上方的拋物線上是否存在點(diǎn)M,是SABM= SABC?若存在,請(qǐng)求出點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;
(3)如圖2,E是線段AC上的動(dòng)點(diǎn),F(xiàn)是線段BC上的動(dòng)點(diǎn),AF與BE相交于點(diǎn)P.
①若CE=BF,試猜想AF與BE的數(shù)量關(guān)系及∠APB的度數(shù),并說(shuō)明理由;
②若AF=BE,當(dāng)點(diǎn)E由A運(yùn)動(dòng)到C時(shí),請(qǐng)直接寫出點(diǎn)P經(jīng)過(guò)的路徑長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,P是線段AB上一點(diǎn),AB=12cm,CD兩點(diǎn)分別從P、B出發(fā)以1cm/s、2cm/s的速度沿直線AB向左運(yùn)動(dòng)(C在線段AP上,D在線段BP上),運(yùn)動(dòng)的時(shí)間為t.

1)當(dāng)t=1時(shí),PD=2AC,請(qǐng)求出AP的長(zhǎng);

2)當(dāng)t=2時(shí),PD=2AC,請(qǐng)求出AP的長(zhǎng);

3)若CD運(yùn)動(dòng)到任一時(shí)刻時(shí),總有PD=2AC,請(qǐng)求出AP的長(zhǎng);

4)在(3)的條件下,Q是直線AB上一點(diǎn),且AQBQ=PQ,求PQ的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形ABCD的邊長(zhǎng)是16,點(diǎn)E在邊AB上,AE=3,點(diǎn)F是邊BC上不與點(diǎn)B,C重合的一個(gè)動(dòng)點(diǎn),把△EBF沿EF折疊,點(diǎn)B落在B′處.若△CDB′恰為等腰三角形,則DB′的長(zhǎng)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABC中,AD,AF分別為ABC的中線和高,BEABD的角平分線.

1)若∠BED=40°,∠BAD=25°,求∠BAF的大小;

2)若ABC的面積為40,BD=5,求AF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】先閱讀下列解題過(guò)程,然后解答后面兩個(gè)問(wèn)題.

解方程:|x3|2

解:當(dāng)x30時(shí),原方程可化為x32,解得x=-1;

當(dāng)x30時(shí),原方程可化為x3=-2,解得x=-5

所以原方程的解是x=-1x=-5

1解方程:|3x2|40

2已知關(guān)于x的方程|x2|b1

①若方程無(wú)解,則b的取值范圍是

②若方程只有一個(gè)解,則b的值為

③若方程有兩個(gè)解,則b的取值范圍是

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在正方形ABCD中,E為BC邊上一點(diǎn),連結(jié)AE.已知AB=8,CE=2,F(xiàn)是線段AE上一動(dòng)點(diǎn).若BF的延長(zhǎng)線交正方形ABCD的一邊于點(diǎn)G,且滿足AE=BG,則 的值為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn)A2m-1,4m+2015)、B-n+,-n+2020)在直線y=kx+b上,則k+b值為______

查看答案和解析>>

同步練習(xí)冊(cè)答案