【題目】如圖,點P是AOB內(nèi)任意一點,OP=10cm,點P與點關于射線OA對稱,點P與點關于射線OB對稱,連接交OA于點C,交OB于點D,當△PCD的周長是10cm時,∠AOB的度數(shù)是______度。
【答案】30°
【解析】
連接OP1,OP2,據(jù)軸對稱的性質(zhì)得出∠P1OA=∠AOP=∠P1OP,∠P2OB=∠POB=POP2,PC=CP1,OP=OP1=10cm,DP2=PD,OP=OP2=10cm,求出△P1OP2是等邊三角形,即可得出答案.
解:如圖:連接OP1,OP2,
∵點P關于射線OA對稱點為點P1
∴OA為PP1的垂直平分線
∴∠P1OA=∠AOP=∠P1OP,
∴PC=CP1,OP=OP1=10cm,
同理可得:∠P2OB=∠POB=∠POP2,DP2=PD,OP=OP2=10cm,
∴△PCD的周長是=CD+PC+PD=CD+CP1+DP2=P1 P2=10cm
∴△P1OP2是等邊三角形,
∴∠P1OP2=60°,
∴∠AOB=30°,
故答案為:30°
科目:初中數(shù)學 來源: 題型:
【題目】如圖,是用圍棋子擺出的圖案(用棋子的位置用用有序數(shù)對表示,如點在),如果再擺一黑一白兩枚棋子,使枚棋子組成的圖案既是軸對稱圖形又是中心對稱圖形,則下列擺放正確的是( )
A. 黑(3,3),白(3,1) B. 黑(3,1),白(3,3)
C. 黑(1,5),白(5,5) D. 黑(3,2),白(3,3)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知一條直線過點,且與拋物線交于,兩點,其中點的橫坐標是.
求這條直線的函數(shù)關系式及點的坐標.
在軸上是否存在點,使得是直角三角形?若存在,求出點的坐標,若不存在,請說明理由.
過線段上一點,作軸,交拋物線于點,點在第一象限,點,當點的橫坐標為何值時,的長度最大?最大值是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】圖1是一輛吊車的實物圖,圖2是其工作示意圖,AC是可以伸縮的起重臂,其轉(zhuǎn)動點A離地面BD的高度AH為3.4m.當起重臂AC長度為9m,張角∠HAC為118°時,求操作平臺C離地面的高度(結(jié)果保留小數(shù)點后一位:參考數(shù)據(jù):sin28°≈0.47,cos28°≈0.88,tan28°≈0.53)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】勾股定理是人類最偉大的科學發(fā)現(xiàn)之一,在我國古算書《周髀算經(jīng)》中早有記載.如圖1,以直角三角形的各邊為邊分別向外作正方形,再把較小的兩張正方形紙片按圖2的方式放置在最大正方形內(nèi).若知道圖中陰影部分的面積,則一定能求出( )
A.直角三角形的面積
B.最大正方形的面積
C.較小兩個正方形重疊部分的面積
D.最大正方形與直角三角形的面積和
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,銳角中,,若想找一點P,使得與互補,甲、乙、丙三人作法分別如下:
甲:以B為圓心,AB長為半徑畫弧交AC于P點,則P即為所求;
乙:分別以B,C為圓心,AB,AC長為半徑畫弧交于P點,則P即為所求;
丙:作BC的垂直平分線和的平分線,兩線交于P點,則P即為所求.
對于甲、乙、丙三人的作法,下列敘述正確的是
A. 三人皆正確B. 甲、丙正確,乙錯誤
C. 甲正確,乙、丙錯誤D. 甲錯誤,乙、丙正確
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點C,E,F,B在同一直線上,點A,D在BC異側(cè),AB∥CD,AE=DF,∠A=∠D.
(1)求證:AB=CD;
(2)若AB=CF,∠B=40°,求∠D的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)探索發(fā)現(xiàn):如圖1,已知Rt△ABC中,∠ACB=90°,AC=BC,直線l過點C,過點A作AD⊥l,過點B作BE⊥l,垂足分別為D、E.求證:AD=CE,CD=BE.
(2)遷移應用:如圖2,將一塊等腰直角的三角板MON放在平面直角坐標系內(nèi),三角板的一個銳角的頂點與坐標原點O重合,另兩個頂點均落在第一象限內(nèi),已知點M的坐標為(1,3),求點N的坐標.
(3)拓展應用:如圖3,在平面直角坐標系內(nèi),已知直線y=﹣3x+3與y軸交于點P,與x軸交于點Q,將直線PQ繞P點沿逆時針方向旋轉(zhuǎn)45°后,所得的直線交x軸于點R.求點R的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀理解:配方法是中學數(shù)學的重要方法,用配方法可求最大(。┲担瑢τ谌我庹龑崝(shù)a、b,可作如下變形a+b==-2+2=+2,又∵≥0,∴ +2≥0+ 2,即a+b ≥2.
(1)根據(jù)上述內(nèi)容,回答下列問題:在a+b≥2(a、b均為正實數(shù))中,若ab為定值p,則a+b≥ 2,當且僅當a、b滿足________時,a+b有最小值2.
(2)思考驗證:如圖1,△ABC中,∠ACB=90°,CD⊥AB,垂足為D,CO為AB邊上中線,AD=2a ,DB=2b, 試根據(jù)圖形驗證a+b≥2成立,并指出等號成立時的條件.
(3)探索應用:如圖2,已知A為反比例函數(shù)的圖象上一點,A點的橫坐標為1,將一塊三角板的直角頂點放在A處旋轉(zhuǎn),保持兩直角邊始終與x軸交于兩點D、E,F(xiàn)(0,-3)為y軸上一點,連接DF、EF,求四邊形ADFE面積的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com