如圖,△ABC的頂點(diǎn)坐標(biāo)分別為A(﹣6,0),B(4,0),C(0,8),把△ABC沿直線BC翻折,點(diǎn)A的對(duì)應(yīng)點(diǎn)為D,拋物線y=ax2﹣10ax+c經(jīng)過(guò)點(diǎn)C,頂點(diǎn)M在直線BC上.

(1)證明四邊形ABCD是菱形,并求點(diǎn)D的坐標(biāo);
(2)求拋物線的對(duì)稱(chēng)軸和函數(shù)表達(dá)式;
(3)在拋物線上是否存在點(diǎn)P,使得△PBD與△PCD的面積相等?若存在,直接寫(xiě)出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

解:(1)證明:∵A(﹣6,0),B(4,0),C(0,8),
∴AB=6+4=10,!郃B=AC。
由翻折可得,AB=BD,AC=CD!郃B=BD=CD=AC!嗨倪呅蜛BCD是菱形。
∴CD∥AB。
∵C(0,8),∴點(diǎn)D的坐標(biāo)是(10,8)。
(2)∵y=ax2﹣10ax+c,∴對(duì)稱(chēng)軸為直線
設(shè)M的坐標(biāo)為(5,n),直線BC的解析式為y=kx+b,
,解得。
∴直線BC的解析式為y=﹣2x+8。
∵點(diǎn)M在直線y=﹣2x+8上,∴n=﹣2×5+8=﹣2。
∴M(5,,-2).
又∵拋物線y=ax2﹣10ax+c經(jīng)過(guò)點(diǎn)C和M,
,解得。
∴拋物線的函數(shù)表達(dá)式為
(3)存在。點(diǎn)P的坐標(biāo)為P1),P2(﹣5,38)

解析試題分析:(1)根據(jù)勾股定理,翻折的性質(zhì)可得AB=BD=CD=AC,根據(jù)菱形的判定和性質(zhì)可得點(diǎn)D的坐標(biāo)。
(2)根據(jù)對(duì)稱(chēng)軸公式可得拋物線的對(duì)稱(chēng)軸,設(shè)M的坐標(biāo)為(5,n),直線BC的解析式為y=kx+b,根據(jù)待定系數(shù)法可求M的坐標(biāo),再根據(jù)待定系數(shù)法求出拋物線的函數(shù)表達(dá)式。
(3)分點(diǎn)P在CD的上面下方和點(diǎn)P在CD的上方兩種情況,根據(jù)等底等高的三角形面積相等可求點(diǎn)P的坐標(biāo):
設(shè)P,
當(dāng)點(diǎn)P在CD的上面下方,根據(jù)菱形的性質(zhì),知點(diǎn)P是AD與拋物線的交點(diǎn),由A,D的坐標(biāo)可由待定系數(shù)法求出AD的函數(shù)表達(dá)式: ,二者聯(lián)立可得P1);
當(dāng)點(diǎn)P在CD的上面上方,易知點(diǎn)P是∠D的外角平分線與拋物線的交點(diǎn),此時(shí),∠D的外角平分線與直線AD垂直,由相似可知∠D的外角平分線PD的斜率等于-2,可設(shè)其為,將D(10,8)代入可得PD的函數(shù)表達(dá)式: ,與拋物線聯(lián)立可得P2(﹣5,38)。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,拋物線與x軸相交于點(diǎn)A、B,與y軸相交于點(diǎn)C,拋物線的對(duì)稱(chēng)軸與x軸相交于點(diǎn)M.P是拋物線在x軸上方的一個(gè)動(dòng)點(diǎn)(點(diǎn)P、M、C不在同一條直線上).分別過(guò)點(diǎn)A、B作直線CP的垂線,垂足分別為D、E,連接點(diǎn)MD、ME.

(1)求點(diǎn)A,B的坐標(biāo)(直接寫(xiě)出結(jié)果),并證明△MDE是等腰三角形;
(2)△MDE能否為等腰直角三角形?若能,求此時(shí)點(diǎn)P的坐標(biāo);若不能,說(shuō)明理由;
(3)若將“P是拋物線在x軸上方的一個(gè)動(dòng)點(diǎn)(點(diǎn)P、M、C不在同一條直線上)”改為“P是拋物線在x軸下方的一個(gè)動(dòng)點(diǎn)”,其他條件不變,△MDE能否為等腰直角三角形?若能,求此時(shí)點(diǎn)P的坐標(biāo)(直接寫(xiě)出結(jié)果);若不能,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

已知:直線過(guò)拋物線的頂點(diǎn)P,如圖所示.

(1)頂點(diǎn)P的坐標(biāo)是     ;
(2)若直線y=ax+b經(jīng)過(guò)另一點(diǎn)A(0,11),求出該直線的表達(dá)式;
(3)在(2)的條件下,若有一條直線y=mx+n與直線y=ax+b關(guān)于x軸成軸對(duì)稱(chēng),求直線y=mx+n與拋物線的交點(diǎn)坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,已知直線y=3x﹣3分別交x軸、y軸于A、B兩點(diǎn),拋物線y=x2+bx+c經(jīng)過(guò)A、B兩點(diǎn),點(diǎn)C是拋物線與x軸的另一個(gè)交點(diǎn)(與A點(diǎn)不重合).

(1)求拋物線的解析式;
(2)求△ABC的面積;
(3)在拋物線的對(duì)稱(chēng)軸上,是否存在點(diǎn)M,使△ABM為等腰三角形?若不存在,請(qǐng)說(shuō)明理由;若存在,求出點(diǎn)M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

直線與x、y軸分別交于點(diǎn)A、C.拋物線的圖象經(jīng)過(guò)A、C和點(diǎn)B(1,0).

(1)求拋物線的解析式;
(2)在直線AC上方的拋物線上有一動(dòng)點(diǎn)D,當(dāng)D與直線AC的距離DE最大時(shí),求出點(diǎn)D的坐標(biāo),并求出最大距離是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,拋物線y=x2+bx+c過(guò)點(diǎn)A(﹣4,﹣3),與y軸交于點(diǎn)B,對(duì)稱(chēng)軸是x=﹣3,請(qǐng)解答下列問(wèn)題:

(1)求拋物線的解析式.
(2)若和x軸平行的直線與拋物線交于C,D兩點(diǎn),點(diǎn)C在對(duì)稱(chēng)軸左側(cè),且CD=8,求△BCD的面積.
注:拋物線y=ax2+bx+c(a≠0)的對(duì)稱(chēng)軸是

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,在⊙C的內(nèi)接△AOB中,AB=AO=4,tan∠AOB=,拋物線(a≠0)經(jīng)過(guò)點(diǎn)A(4,0)與點(diǎn)(﹣2,6).

(1)求拋物線的解析式;
(2)直線m與⊙C相切于點(diǎn)A,交y軸于點(diǎn)D,動(dòng)點(diǎn)P在線段OB上,從點(diǎn)O出發(fā)向點(diǎn)B運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)Q在線段DA上,從點(diǎn)D出發(fā)向點(diǎn)A運(yùn)動(dòng),點(diǎn)P的速度為每秒1個(gè)單位長(zhǎng),點(diǎn)Q的速度為每秒2個(gè)單位長(zhǎng).當(dāng)PQ⊥AD時(shí),求運(yùn)動(dòng)時(shí)間t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

已知拋物線y=a(x﹣3)2+2經(jīng)過(guò)點(diǎn)(1,﹣2).
(1)求a的值;
(2)若點(diǎn)A(m,y1)、B(n,y2)(m<n<3)都在該拋物線上,試比較y1與y2的大小.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:單選題

某閉合電路中,電源的電壓為定值,電流I(A)與電阻R(Ω)成反比例.圖表示的是該電路中電流I與電阻R之間函數(shù)關(guān)系的圖象,則用電阻R表示電流I的函數(shù)解析式為( 。

A.        B.        C.        D.

查看答案和解析>>

同步練習(xí)冊(cè)答案