已知x2與-x的值相等,則x的值是
0或-1
0或-1
分析:由于x2=-x,再移項(xiàng)得到x2+x=0,然后利用因式分解法求出x的值.
解答:解:∵x2=-x,
∴x2+x=0,
∴x(x+1)=0,
∴x=0或x+1=0,
∴x1=0,x2=-1.
故答案為0或-1.
點(diǎn)評(píng):本題考查了解一元二次方程-因式分解法:先把方程右邊變形為0,再把方程左邊分解為兩個(gè)一次式的乘積,這樣原方程轉(zhuǎn)化為兩個(gè)一元一次方程,然后解一次方程即可得到一元二次方程的解.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

等邊△OAB在平面直角坐標(biāo)系中(圖1),已知點(diǎn)A(2,0),將△OAB繞點(diǎn)O順時(shí)針方向旋轉(zhuǎn)a°(0<a<360)得△OA1B1
(1)直接寫出點(diǎn)B的坐標(biāo);
(2)當(dāng)a=30°時(shí),求△OAB與△OA1B1重合部分(圖2中的陰影部分)的面積;
(3)當(dāng)A1,B1的縱坐標(biāo)相同時(shí),求a的值;
(4)當(dāng)60<a<180時(shí),設(shè)直線A1B1與BA相交于點(diǎn)P,PA、PB1的長(zhǎng)是方程x2-mx+m=0的兩個(gè)實(shí)數(shù)根,求此時(shí)點(diǎn)P的坐標(biāo).
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

設(shè)拋物線C的解析式為:y=x2-2kx+(
3
+k)k,k為實(shí)數(shù).
(1)求拋物線的頂點(diǎn)坐標(biāo)和對(duì)稱軸方程(用k表示);
(2)任意給定k的三個(gè)不同實(shí)數(shù)值,請(qǐng)寫出三個(gè)對(duì)應(yīng)的頂點(diǎn)坐標(biāo);試說明當(dāng)k變化時(shí),拋物線C的頂點(diǎn)在一條定直線L上,求出直線L的解析式并畫出圖象;
(3)在第一象限有任意兩圓O1、O2相外切,且都與x軸和(2)中的直線L相切.設(shè)兩圓在x軸上的切點(diǎn)分別為A、B(OA<OB),試問:
OA
OB
是否為一定值?若是,請(qǐng)求出該定值;若不是,請(qǐng)說明理由;
(4)已知一直線L1與拋物線C中任意一條都相截,且截得的線段長(zhǎng)都為6,求這條直線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=x2-|x|-12的圖象與x軸交于相異兩點(diǎn)A、B,另一拋物線y=ax2+bx+c過點(diǎn)A、B,頂點(diǎn)為P,且△APB是等腰直角三角形,求a、b、c的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

13、已知二次函數(shù)y=ax2+bx+a,且當(dāng)x1=0,x2=2a時(shí),相對(duì)應(yīng)的y1=y2,若此函數(shù)圖象與x軸沒有交點(diǎn),則a的取值范圍是
-1<a<1且a≠0

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖,拋物線y=x2+bx+c與x軸的一個(gè)相交點(diǎn)坐標(biāo)為A(1,0),與y軸上的交點(diǎn)坐標(biāo)C(0,3).
(1)求拋物線的函數(shù)關(guān)系式;
(2)求與x軸的另一交點(diǎn)坐標(biāo)B;
(3)若點(diǎn)D(
72
,m)是拋物線y=x2+bx+c上的一點(diǎn),請(qǐng)求出m的值,并求出此時(shí)△ABD的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案