【題目】如圖,正方形ABCD和正方形CEFG邊長分別為a和b,正方形CEFG繞點C旋轉(zhuǎn),給出下列結(jié)論:①BE=DG;②BE⊥DG;③,其中正確結(jié)論是 (填序號)
【答案】①②③.
【解析】
試題分析:設(shè)BE,DG交于O,∵四邊形ABCD和EFGC都為正方形,∴BC=CD,CE=CG,∠BCD=∠ECG=90°,∴∠BCE+∠DCE=∠ECG+∠DCE=90°+∠DCE,即∠BCE=∠DCG,在△BCE和△DCG中,∵BC=DC,∠BCE=∠DCG,CE=CG,∴△BCE≌△DCG(SAS),∴BE=DG,∴∠1=∠2,∵∠1+∠4=∠3+∠1=90°,∴∠2+∠3=90°,∴∠BOC=90°,∴BE⊥DG;故①②正確;
連接BD,EG,如圖所示,∴DO2+BO2=BD2=BC2+CD2=2a2,EO2+OG2=EG2=CG2+CE2=b2,則BG2+DE2=DO2+BO2+EO2+OG2=2a2+b2,故③正確.
故答案為:①②③.
科目:初中數(shù)學 來源: 題型:
【題目】甲、乙兩人由相距60km的兩地同時出發(fā)相向而行,甲步行每小時走5km,乙騎自行車,3h后相遇,則乙的速度為( 。
A. 5 km/hB. 10 km/hC. 15 km/hD. 20 km/h
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某商場把一個雙肩背書包按進價提高50%標價,然后再按八折出售,這樣商場每賣出一個書包就可贏利8元.設(shè)每個雙肩背書包的進價是x元,根據(jù)題意列一元一次方程,正確的是( )
A.(1+50%)x80%﹣x=8
B.50%x80%﹣x=8
C.(1+50%)x80%=8
D.(1+50%)x﹣x=8
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知拋物線(a≠0)的圖象的頂點坐標是(2,1),并且經(jīng)過點(4,2),直線與拋物線交于B,D兩點,以BD為直徑作圓,圓心為點C,圓C與直線m交于對稱軸右側(cè)的點M(t,1),直線m上每一點的縱坐標都等于1.
(1)求拋物線的解析式;
(2)證明:圓C與x軸相切;
(3)過點B作BE⊥m,垂足為E,再過點D作DF⊥m,垂足為F,求MF的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABD中,∠BAD=90°,AB=AD,△ACE中,∠CAE=90°,AC=AE。
(1)求證:DC=BE;
(2)試判斷∠AFD和∠AFE的大小關(guān)系,并說明理由。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com