【題目】如圖,矩形ABCD的兩邊長(zhǎng)AB=18cm,AD=4cm,點(diǎn)P、Q分別從A、B同時(shí)出發(fā),P在邊AB上沿AB方向以每秒2cm的速度勻速運(yùn)動(dòng),Q在邊BC上沿BC方向以每秒1cm的速度勻速運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為x(秒),△PBQ的面只為y(cm2).

(1)求y關(guān)于x的函數(shù)關(guān)系式,并寫(xiě)出x的取值范圍.
(2)求△PBQ的面積的最大值.

【答案】
(1)解:∵ = PBBQ,PB=AB﹣AP=18﹣2x,BQ=x,

∴y= x(18﹣2x),

即y= +9x(0<x≤4)


(2)解:由(1)知,y= +9x(0<x≤4),

∴y=

∵當(dāng)0<x≤ 時(shí),y隨x的增大而增大,

而0<x≤4,

∴當(dāng)x=4時(shí), =20,

即△PBQ的最大面積是20


【解析】(1)抓住已知條件中的兩點(diǎn)的運(yùn)動(dòng)方向:P在邊AB上沿AB方向,Q在邊BC上沿BC方向。先用含x的代數(shù)式表示出PB、BQ的長(zhǎng),根據(jù)三角形的面積公式,可求出函數(shù)解析式及自變量的取值范圍。
(2)根據(jù)(1)中的函數(shù)解析式,求出其頂點(diǎn)坐標(biāo),由二次函數(shù)的性質(zhì)得出當(dāng)0<x≤ 時(shí),y隨x的增大而增大,再根據(jù)0<x≤4,可得出△PBQ的面積的最大值。
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解二次函數(shù)的性質(zhì)的相關(guān)知識(shí),掌握增減性:當(dāng)a>0時(shí),對(duì)稱(chēng)軸左邊,y隨x增大而減;對(duì)稱(chēng)軸右邊,y隨x增大而增大;當(dāng)a<0時(shí),對(duì)稱(chēng)軸左邊,y隨x增大而增大;對(duì)稱(chēng)軸右邊,y隨x增大而減小,以及對(duì)二次函數(shù)的最值的理解,了解如果自變量的取值范圍是全體實(shí)數(shù),那么函數(shù)在頂點(diǎn)處取得最大值(或最小值),即當(dāng)x=-b/2a時(shí),y最值=(4ac-b2)/4a.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,∠AOB30,∠AOB 內(nèi)有一定點(diǎn) P,且 OP12,在 OA 上有一動(dòng)點(diǎn) Q,OB 上有 一動(dòng)點(diǎn) R。若PQR 周長(zhǎng)最小,則最小周長(zhǎng)是( )

A. 6 B. 12 C. 16 D. 20

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,OP平分∠BOA,PC⊥OA,PD⊥OB,垂足分別是C、D,則下列結(jié)論中錯(cuò)誤的是( 。

A. PC=PD B. OC=OD C. OC=OP D. ∠CPO=∠DPO

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB是⊙O的直徑,直線EF切⊙O于點(diǎn)C, AD⊥EF于點(diǎn)D.

(1)求證:AC平分∠BAD;
(2)若⊙O的半徑為2,∠ACD=30°,求圖中陰影部分的面積.(結(jié)果保留π)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,把一副三角板如圖(1)放置,其中∠ACB=∠DEC=90°,∠A=45°,∠D=30°,斜邊AB=4,CD=5。把三角板DCE繞著點(diǎn)C順時(shí)針旋轉(zhuǎn)15°得到△D1CE1(如圖2),此時(shí)AB與CD1交于點(diǎn)O,則線段AD1的長(zhǎng)度為。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某公司共有50名員工,為慶!拔逡弧眹(guó)際勞動(dòng)節(jié),公司將組織員工參加“海南雙飛五日游”活動(dòng),旅行社的收費(fèi)標(biāo)準(zhǔn)是每人2500元,公司提供下列兩種方案供員工選擇參與:

方案一:要參加旅游活動(dòng)者,對(duì)于2500元的旅游費(fèi),員工個(gè)人支付500元,其余2000元由公司支付;

方案二:不參加旅游者,不必交費(fèi),每人還能領(lǐng)取公司發(fā)放的500元節(jié)日費(fèi).

(1)如果公司有30人參加旅游,其余20人不參加,問(wèn)公司總共需支付多少元?

(2)如果公司共支付5.5萬(wàn)元,問(wèn)有多少名員工參加旅游活動(dòng)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線y=﹣x2+4x+5與x軸交于點(diǎn)A,點(diǎn)B,與y軸交于點(diǎn)C,若D為AB的中點(diǎn),則CD的長(zhǎng)為( )
A.
B.
C.
D.7

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】發(fā)現(xiàn)與探索

你能求 x 1x2019 x2018 x2017 x 1 的值嗎?

遇到這樣的問(wèn)題,我們可以先思考一下,從簡(jiǎn)單的情形手.先分別計(jì)算下列各式的值:

x 1 x 1 x2 1

x 1x2 x 1 x3 1 ;

x 1x3 x2 x 1 x4 1

由此我們可以得到:

x 1x2019 x2018 x2017 x 1 ; 請(qǐng)你利用上面的結(jié)論,完成下面兩題的計(jì)算:

132019 32018 32017 3 1 ;

2250 249 248 2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在我們認(rèn)識(shí)的多邊形中有很多軸對(duì)稱(chēng)圖形.有些多邊形,邊數(shù)不同對(duì)稱(chēng)軸的條數(shù)也不同;有些多邊形邊數(shù)相同但卻有不同數(shù)目的對(duì)稱(chēng)軸.回答下列問(wèn)題

(1)非等邊的等腰三角形有________條對(duì)稱(chēng)軸,非正方形的長(zhǎng)方形有________條對(duì)稱(chēng)軸等邊三角形有___________條對(duì)稱(chēng)軸;

(2)觀察下列一組凸多邊形實(shí)線畫(huà)出),它們的共同點(diǎn)是只有1條對(duì)稱(chēng)軸,其中圖1-2和圖1-3都可以看作由圖1-1修改得到的仿照類(lèi)似的修改方式,請(qǐng)你在圖1-4和圖1-5分別修改圖1-2和圖1-3,得到一個(gè)只有1條對(duì)稱(chēng)軸的凸五邊形,并用實(shí)線畫(huà)出所得的凸五邊形;

(3)小明希望構(gòu)造出一個(gè)恰好有2條對(duì)稱(chēng)軸的凸六邊形,于是他選擇修改長(zhǎng)方形2中是他沒(méi)有完成的圖形,請(qǐng)用實(shí)線幫他補(bǔ)完整個(gè)圖形;

(4)請(qǐng)你畫(huà)一個(gè)恰好有3條對(duì)稱(chēng)軸的凸六邊形,并用虛線標(biāo)出對(duì)稱(chēng)軸

查看答案和解析>>

同步練習(xí)冊(cè)答案