【題目】如圖,已知平行四邊形ABCO,以點(diǎn)O為原點(diǎn),OC所在的直線為x軸,建立直角坐標(biāo)系,AB交y軸于點(diǎn)D,AD=4,OC=10,∠A=60°,線段EF垂直平分OD,點(diǎn)P為線段EF上的動(dòng)點(diǎn),PM⊥x軸于點(diǎn)M點(diǎn),點(diǎn)E與E'關(guān)于x軸對(duì)稱,連接BP、E'M,則BP+PM+ME'的長(zhǎng)度的最小值為______.
【答案】
【解析】
連接OP,先確定OD的長(zhǎng)和B點(diǎn)坐標(biāo),然后證明四邊形OPME'是平行四邊形,可得OP=EM,因?yàn)?/span>PM是定值,推出PB+ME'=OP+PB的值最小時(shí),即當(dāng)O、P、B共線時(shí)BP+PM+M E的長(zhǎng)度最小,最后根據(jù)兩點(diǎn)間的距離公式和線段的和差解答即可.
解:如圖:連接OP
在Rt△ADO中,∠A=60°,AD=4,
∴OD=4tan60°=4,
∴A(-4,4)
∵四邊形ABCD是平行四邊形,
∴AB=OC=10,
∴DB=10-4=6
∴B(6,4)
∵線段EF垂直平分OD
∴OE=OD=2,∠PEO=∠EOM=∠PM0=90°,
∴四邊形OMPE是矩形,
∴PM=OE=2,
∵OE=0E'
∴PM=OE',PM//OE',
∴四邊形OPME'是平行四邊形,
∴0P=EM,
∵PM=2是定值,
∴PB+ME'=OP+PB的值最小時(shí),BP+PM+ME的長(zhǎng)度最小,
∴當(dāng)0、P、B共線時(shí),BP+PM+ME的長(zhǎng)度最小
∴BP+PM+ME的最小值為OB+PM=.
故答案為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(本小題滿分8分)某廠制作甲、乙兩種環(huán)保包裝盒。已知同樣用6m的材料制成甲盒的個(gè)數(shù)比制成乙盒的個(gè)數(shù)少2個(gè),且制成一個(gè)甲盒比制作一個(gè)乙盒需要多用20%的材料。
(1)求制作每個(gè)甲盒、乙盒各用多少材料?
(2)如果制作甲、乙兩種包裝盒3000個(gè),且甲盒的數(shù)量不少于乙盒數(shù)量的2倍,那么請(qǐng)寫出所需材料總長(zhǎng)度與甲盒數(shù)量之間的函數(shù)關(guān)系式,并求出最少需要多少米材料。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】珠海市水務(wù)局對(duì)某小區(qū)居民生活用水情況進(jìn)行了調(diào)査.隨機(jī)抽取部分家庭進(jìn)行統(tǒng)計(jì),繪制成如下尚未完成的頻數(shù)分布表和頻率分布直方圖.請(qǐng)根據(jù)圖表,解答下列問(wèn)題:
月均用水量(單位:噸 | 頻數(shù) | 頻率 |
2≤x<3 | 4 | 0.08 |
3≤x<4 | a | b |
4≤x<5 | 14 | 0.28 |
5≤x<6 | 9 | c |
6≤x<7 | 6 | 0.12 |
7≤x<8 | 5 | 0.1 |
合計(jì) | d | 1.00 |
(1)b= ,c= ,并補(bǔ)全頻數(shù)分布直方圖;
(2)為鼓勵(lì)節(jié)約用水用水,現(xiàn)要確定一個(gè)用水量標(biāo)準(zhǔn)P(單位:噸),超過(guò)這個(gè)標(biāo)準(zhǔn)的部分按1.5倍的價(jià)格收費(fèi),若要使60%的家庭水費(fèi)支出不受影響,則這個(gè)用水量標(biāo)準(zhǔn)P= 噸;
(3)根據(jù)該樣本,請(qǐng)估計(jì)該小區(qū)400戶家庭中月均用水量不少于5噸的家庭約有多少戶?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,D是BC邊上的點(diǎn)(不與點(diǎn)B,C重合),連結(jié)AD
(1)如圖1,當(dāng)點(diǎn)D是BC邊上的中點(diǎn)時(shí),則S△ABD:S△ACD=_________(直接寫出答案)
(2)如圖2,當(dāng)AD是∠BAC的平分線時(shí),若AB=m,AC=n,S△ABD:S△ACD=_________ (用含m,n的代數(shù)式表示).
(3)如圖3,AD平分∠BAC,延長(zhǎng)AD到E,使得AD=DE,連結(jié)BE,如果AC=2,AB=4,S△BDE =6,求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】完成下面的證明過(guò)程:
已知:如圖,∠D=110°,∠EFD=70°,∠1=∠2,
求證:∠3=∠B
證明:∵∠D=110°, ∠EFD=70°(已知)
∴∠D+∠EFD=180°
∴AD∥______( )
又∵∠1=∠2(已知)
∴_____∥BC ( 內(nèi)錯(cuò)角相等,兩直線平行)
∴EF∥_____ ( )
∴∠3=∠B(兩直線平行,同位角相等)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,如圖,點(diǎn)F在AB上,點(diǎn)E在CD上,AE、DF分別交BC與H,G,∠A=∠D,∠FGB+∠EHG=180°.
(1)求證:AB∥CD;
(2)若AE⊥BC,直接寫出圖中所有與∠C互余的角,不需要證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一次函數(shù)y1=kx+b的圖象與反比例函數(shù)的圖象交于點(diǎn)A(﹣2,﹣5),C(5,n),交y軸于點(diǎn)B,交x軸于點(diǎn)D.
(1)求反比例函數(shù)和一次函數(shù)y1=kx+b的表達(dá)式;
(2)連接OA,OC,求△AOC的面積;
(3)根據(jù)圖象,直接寫出y1>y2時(shí)x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在平面直角坐標(biāo)系中,直線AB與x軸、y軸相交于、兩點(diǎn),動(dòng)點(diǎn)C在線段OA上(不與O、A重合),將線段CB繞著點(diǎn)C順時(shí)針旋轉(zhuǎn)得到CD,當(dāng)點(diǎn)D恰好落在直線AB上時(shí),過(guò)點(diǎn)D作軸于點(diǎn)E.
(1)求證,;
(2)如圖2,將沿x軸正方向平移得,當(dāng)直線經(jīng)過(guò)點(diǎn)D時(shí),求點(diǎn)D的坐標(biāo)及平移的距離;
(3)若點(diǎn)P在y軸上,點(diǎn)Q在直線AB上,是否存在以C、D、P、Q為頂點(diǎn)的四邊形是平行四邊形?若存在,直接寫出所有滿足條件的Q點(diǎn)坐標(biāo),若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線y=ax2+bx+c(a≠0)的圖象過(guò)點(diǎn)M(﹣2, ),頂點(diǎn)坐標(biāo)為N(﹣1, ),且與x軸交于A、B兩點(diǎn),與y軸交于C點(diǎn).
(1)求拋物線的解析式;
(2)點(diǎn)P為拋物線對(duì)稱軸上的動(dòng)點(diǎn),當(dāng)△PBC為等腰三角形時(shí),求點(diǎn)P的坐標(biāo);
(3)在直線AC上是否存在一點(diǎn)Q,使△QBM的周長(zhǎng)最?若存在,求出Q點(diǎn)坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com