【題目】如圖1,在平面直角坐標(biāo)系中,直線ABx軸、y軸相交于、兩點(diǎn),動(dòng)點(diǎn)C在線段OA上(不與O、A重合),將線段CB繞著點(diǎn)C順時(shí)針旋轉(zhuǎn)得到CD,當(dāng)點(diǎn)D恰好落在直線AB上時(shí),過(guò)點(diǎn)D軸于點(diǎn)E.

1)求證,;

2)如圖2,將沿x軸正方向平移得,當(dāng)直線經(jīng)過(guò)點(diǎn)D時(shí),求點(diǎn)D的坐標(biāo)及平移的距離;

3)若點(diǎn)Py軸上,點(diǎn)Q在直線AB上,是否存在以CD、P、Q為頂點(diǎn)的四邊形是平行四邊形?若存在,直接寫(xiě)出所有滿(mǎn)足條件的Q點(diǎn)坐標(biāo),若不存在,請(qǐng)說(shuō)明理由.

【答案】1,見(jiàn)解析;(2D3,1),平移的距離是個(gè)單位,見(jiàn)解析;(3)存在滿(mǎn)足條件的點(diǎn)Q,其坐標(biāo)為,見(jiàn)解析.

【解析】

1)根據(jù)AASASA即可證明;
2)首先求直線AB的解析式,再求出出點(diǎn)D的坐標(biāo),再求出直線BC′的解析式,求出點(diǎn)C′的坐標(biāo)即可解決問(wèn)題;

(3)如圖3中,作CP∥AB交y軸于P,作PQ∥CD交AB于Q,則四邊形PCDQ是平行四邊形,求出直線PC的解析式,可得點(diǎn)P坐標(biāo),點(diǎn)C向左平移1個(gè)單位,向上平移個(gè)單位得到P,推出點(diǎn)D向左平移1個(gè)單位,向上平移個(gè)單位得到Q,再根據(jù)對(duì)稱(chēng)性可得Q′、Q″的坐標(biāo).

1)∵,

,,

,

2)∵直線ABx軸,y軸交于、兩點(diǎn)

∴直線AB的解析式為

,

,設(shè),則

代入得到,

,

∴直線BC的解析式為

設(shè)直線的解析式為,把代入得到

∴直線的解析式為,

,

平移的距離是個(gè)單位.

(3)如圖3中,作CPABy軸于P,作PQCDABQ,則四邊形PCDQ是平行四邊形,

易知直線PC的解析式為y=-x+,
P0,),
∵點(diǎn)C向左平移1個(gè)單位,向上平移個(gè)單位得到P,
∴點(diǎn)D向左平移1個(gè)單位,向上平移個(gè)單位得到Q
Q2,),
當(dāng)CD為對(duì)角線時(shí),四邊形PCQ″D是平行四邊形,可得Q″
當(dāng)四邊形CDP′Q′為平行四邊形時(shí),可得Q′,
綜上所述, 存在滿(mǎn)足條件的點(diǎn)Q,其坐標(biāo)為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖:在中,已知AB=AC,垂足為點(diǎn)D,點(diǎn)FAD的延長(zhǎng)線上,且CEBF,試說(shuō)明DE=DF的理由.

解:因?yàn)?/span>AB=ACADBC(已知)

所以BD=

因?yàn)?/span>CEBF(已知)

所以=

中,

=

=

所以( )

所以DE=DF( )

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知平行四邊形ABCO,以點(diǎn)O為原點(diǎn),OC所在的直線為x軸,建立直角坐標(biāo)系,ABy軸于點(diǎn)D,AD=4OC=10,∠A=60°,線段EF垂直平分OD,點(diǎn)P為線段EF上的動(dòng)點(diǎn),PM⊥x軸于點(diǎn)M點(diǎn),點(diǎn)EE'關(guān)于x軸對(duì)稱(chēng),連接BP、E'M,則BP+PM+ME'的長(zhǎng)度的最小值為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某大型企業(yè)為了保護(hù)環(huán)境,準(zhǔn)備購(gòu)買(mǎi)A、B兩種型號(hào)的污水處理設(shè)備共8臺(tái),用于同時(shí)治理不同成分的污水,若購(gòu)買(mǎi)A2臺(tái)、B3臺(tái)需54萬(wàn),購(gòu)買(mǎi)A4臺(tái)、B2臺(tái)需68萬(wàn)元.

1)求出A型、B型污水處理設(shè)備的單價(jià);

2)經(jīng)核實(shí),一臺(tái)A型設(shè)備一個(gè)月可處理污水220噸,一臺(tái)B型設(shè)備一個(gè)月可處理污水190噸,如果該企業(yè)每月的污水處理量不低于1565噸,請(qǐng)你為該企業(yè)設(shè)計(jì)一種最省錢(qián)的購(gòu)買(mǎi)方案.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】ABC在平面直角坐標(biāo)系xOy中的位置如圖所示.

1)作ABC關(guān)于點(diǎn)C成中心對(duì)稱(chēng)的A1B1C1

2)將A1B1C1向右平移4個(gè)單位,作出平移后的A2B2C2

3)在x軸上求作一點(diǎn)P,使PA1+PC2的值最小,并寫(xiě)出點(diǎn)P的坐標(biāo)(不寫(xiě)解答過(guò)程,直接寫(xiě)出結(jié)果)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知、滿(mǎn)足:.

1)求、的值;

2)已知線段AB,點(diǎn)P在直線AB上,且,點(diǎn)QPB的中點(diǎn),求線段AQ的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商場(chǎng)計(jì)劃撥款9萬(wàn)元從廠家購(gòu)進(jìn)50臺(tái)電視機(jī),已知該廠生產(chǎn)三種不同型號(hào)的電視機(jī),出廠價(jià)分別為甲種每臺(tái)1500, 乙種每臺(tái)2100, 丙種每臺(tái)2500, 若商場(chǎng)同時(shí)購(gòu)進(jìn)其中兩種不同型號(hào)的電視機(jī)共50臺(tái),用去9萬(wàn)元.請(qǐng)你通過(guò)計(jì)算,說(shuō)明商場(chǎng)有哪些進(jìn)貨方案.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某鎮(zhèn)道路改造工程,由甲、乙兩工程隊(duì)合作完成.甲工程隊(duì)單獨(dú)施工比乙工程隊(duì)單獨(dú)施工多用30天完成此項(xiàng)工程,甲工程隊(duì)30天完成的工程與甲、乙兩工程隊(duì)10天完成的工程相等.

1)求甲、乙兩工程隊(duì)單獨(dú)完成此項(xiàng)工程各需要多少天?

2)如果甲工程隊(duì)施工每天需付施工費(fèi)1萬(wàn)元,乙工程隊(duì)施工每天需付施工費(fèi)2.5萬(wàn)元,甲工程隊(duì)至少要單獨(dú)施工多少天后,再由甲、乙兩工程隊(duì)合作施工完成剩下的工程,才能使施工費(fèi)不超過(guò)64萬(wàn)元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖一漁船由西往東航行,A點(diǎn)測(cè)得海島C位于北偏東60°的方向前進(jìn)20海里到達(dá)B點(diǎn),此時(shí)測(cè)得海島C位于北偏東30°的方向,則海島C到航線AB的距離CD等于_______海里

查看答案和解析>>

同步練習(xí)冊(cè)答案