【題目】如圖,四邊形OABC是平行四邊形,以O為圓心,OA為半徑的圓交AB于D,延長AO交⊙O于E,連接CD,CE,若CE是⊙O的切線,解答下列問題:
(1)求證:CD是⊙O的切線;
(2)若BC=3,CD=4,求平行四邊形OABC的面積.
【答案】(1)證明見解析;
(2)平行四邊形OABC的面積S=12
【解析】
試題(1)連接OD,求出∠EOC=∠DOC,根據SAS推出△EOC≌△DOC,推出∠ODC=∠OEC=90°,根據切線的判定推出即可;
(2)根據全等三角形的性質求出CE=CD=4,根據平行四邊形性質求出OA=3,根據平行四邊形的面積公式求出即可.
試題解析:(1)連接OD,
∵OD=OA,
∴∠ODA=∠A,
∵四邊形OABC是平行四邊形,
∴OC∥AB,
∴∠EOC=∠A,∠COD=∠ODA,
∴∠EOC=∠DOC,
又∵OE=OD,OC=OC,
∴△EOC≌△DOC(SAS),
∴∠ODC=∠OEC=90°,
即OD⊥DC,
∴CD是⊙O的切線;
(2)∵△EOC≌△DOC,
∴CE=CD=4,
∵四邊形OABC是平行四邊形,
∴OA=BC=3,
∴平行四邊形OABC的面積S=OA×CE=3×4=12.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在矩形ABCD中,E、F分別是邊AB、CD上的點,AE=CF,連接EF,BF,EF與對角線AC交于O點,且BE=BF,∠BEF=2∠BAC。
(1)求證:OE=OF;
(2)若BC=,求AB的長。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】若等腰三角形的頂角為36°,則這個三角形就是黃金三角形。如圖,在△ABC中,BA=BC,D 在邊 CB 上,且 DB=DA=AC。
(1)如圖1,寫出圖中所有的黃金三角形,并證明;
(2)若 M為線段 BC上的點,過 M作直線MH⊥AD于 H,分別交直線 AB,AC與點N,E,如圖 2,試寫出線段 BN、CE、CD之間的數(shù)量關系,并加以證明.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,、都是等腰三角形,且,,,、相交于點,點、分別是線段、的中點.以下個結論:①;②;③是等邊三角形;④連,則平分.正確的是( )
A.①②③B.①②④C.①③④D.①②③④
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某工廠計劃生產兩種產品共10件,其生產成本和銷售價如下表所示:
產品 | 種產品 | 種產品 |
成本(萬元/件) | 3 | 5 |
售價(萬元/件) | 4 | 7 |
(1)若工廠計劃獲利14萬元,則應分別生產兩種產品多少件?
(2)若工廠投入資金不多于44萬元,且獲利不少于14萬元,則工廠有哪些生產方案?
(3)在第(2)的條件下,哪種方案獲利最大;最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:在平面直角坐標系中,為軸負半軸上的點,為軸負半軸上的點.
(1)如圖1,以點為頂點、為腰在第三象限作等腰,若,,試求點的坐標;
(2)如圖,若點的坐標為,點的坐標為,點的縱坐標為,以為頂點,為腰作等腰.試問:當點沿軸負半軸向下運動且其他條件都不變時,整式的值是否發(fā)生變化?若不發(fā)生變化,請求出其值;若發(fā)生變化,請說明理由;
(3)如圖,為軸負半軸上的一點,且,于點,以為邊作等邊,連接交于點,試探索:在線段、和中,哪條線段等于與的差的一半?請你寫出這個等量關系,并加以證明.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知在△ABC中,∠A=90°.
(1)請用圓規(guī)和直尺在AC上求作一點P,使得點P到BC邊的距離等于PA的長;(保留作圖痕跡,不寫作法和證明)
(2)若AB=3,BC=5,求點P到BC邊的距離.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖是8×8的標準點陣圖,直線l、m互相垂直,已知△ABC.
(1)寫出△ABC的形狀;
(2)分別畫出△ABC關于直線l、m對稱的△A1B1C1,△A2B2C2,再畫出△A1B1C1關于直線m對稱的△A3B3C3
(3)△A2B2C2與△A3B3C3關于哪條直線對稱? (填“直線l、m”)
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com