【題目】已知:如圖,等邊三角形ABC中,D、E分別是BCAC上的點,且AE=CD,

1)求證:AD=BE

2)求:∠BFD的度數(shù).

【答案】1)見解析;(260°.

【解析】

1)根據(jù)等邊三角形各邊長相等的性質(zhì)可得AB=AC,易證ABE≌△CAD可得AD=BE

2)根據(jù)全等三角形對應(yīng)角相等可得∠ABE=CAD,進而根據(jù)∠BFD=BAD+ABE即可求∠BFD的度數(shù).

(1)證明:∵△ABC是等邊三角形,

∴∠BAC=C=60°,AB=CA

ABECAD ,

ABE≌△CAD(SAS)

AD=BE(全等三角形對應(yīng)邊相等);

(2)∵△ABE≌△CAD(已證),

∴∠ABE=CAD(全等三角形對應(yīng)角相等),

又∵∠BFD=BAD+ABE,

∴∠BFD=BAD+CAD=BAC,

又∠BAC=60°

∴∠BFD=60°.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】已知直線ABCD相交于點O,且∠AOD90°,現(xiàn)將一個直角三角尺的直角頂點放在點O處,把該直角三角尺OEF繞著點O旋轉(zhuǎn),作射線OH平分∠AOE

1)如圖1所示,當∠DOE20°時,∠FOH的度數(shù)是   

2)若將直角三角尺OEF繞點O旋轉(zhuǎn)至圖2的位置,試判斷∠FOH和∠BOE之間的數(shù)量關(guān)系,并說明理由.

3)若再作射線OG平分∠BOF,試求∠GOH的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在如圖所示的正方形網(wǎng)格中,每個小正方形的邊長為1,格點三角形(頂點是網(wǎng)格線的交點的三角形)ABC的頂點A,C的坐標分別為A(-4,5),C(-1,3).

(1)請在如圖所示的網(wǎng)格內(nèi)作出x軸、y軸;

(2)請作出ABC關(guān)于y軸對稱的A1B1C1;

(3)寫出點B1的坐標并求出A1B1C1的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,在矩形ABCD中,AB=6cm,BC=8cm,對角線AC,BD交于點0.點P從點A出發(fā),沿方向勻速運動,速度為1cm/s;同時,點Q從點D出發(fā),沿DC方向勻速運動,速度為1cm/s;當一個點停止運動時,另一個點也停止運動.連接PO并延長,交BC于點E,過點QQFAC,交BD于點F.設(shè)運動時間為t(s)(0<t<6),解答下列問題:

(1)當t為何值時,AOP是等腰三角形?

(2)設(shè)五邊形OECQF的面積為S(cm2),試確定St的函數(shù)關(guān)系式;

(3)在運動過程中,是否存在某一時刻t,使S五邊形S五邊形OECQF:SACD=9:16?若存在,求出t的值;若不存在,請說明理由;

(4)在運動過程中,是否存在某一時刻t,使OD平分∠COP?若存在,求出t的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小明用尺規(guī)作圖作△ABC的邊AC上的高BH,作法如下:

分別以點D、E為圓心,大于DE的一半的長度為半徑作弧,兩弧交于點F

作射線BF,交邊AC于點H;

B為圓心,BK的長為半徑作弧,交直線AC于點DE

取一點K,使KBAC的兩側(cè);

所以BH就是所求作的高。

正確的作圖順序應(yīng)該是____________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知在平面直角坐標系中有三點、、,請回答如下問題:

1)在坐標系內(nèi)描出點的位置:

2)求出以三點為頂點的三角形的面積;

3)在軸上是否存在點,使以三點為頂點的三角形的面積為10,若存在,請直接寫出點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知點A D C F在同一直線上,AB=DE,AD=CF,添加下列條件后,仍不能判斷△ABC≌△DEF的是 ( )

A. BC=EFB. A=EDFC. ABDED. BCA=F

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在Rt△ABC中,∠C=90°,AC=6,BC=8,動點P從點A開始沿邊AC向點C以1個單位長度的速度運動,動點Q從點C開始沿邊CB向點B以每秒2個單位長度的速度運動,過點P作PD∥BC,交AB于點D,連接PQ分別從點A、C同時出發(fā),當其中一點到達端點時,另一點也隨之停止運動,設(shè)運動時間為t秒(t≥0).

(1)直接用含t的代數(shù)式分別表示:QB=   ,PD=   

(2)是否存在t的值,使四邊形PDBQ為菱形?若存在,求出t的值;若不存在,說明理由.并探究如何改變Q的速度(勻速運動),使四邊形PDBQ在某一時刻為菱形,求點Q的速度;

(3)如圖2,在整個運動過程中,求出線段PQ中點M所經(jīng)過的路徑長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點O在直線AB上,OCAB,△ODE中,∠ODE=90°,∠EOD=60°,先將△ODE一邊OEOC重合,然后繞點O順時針方向旋轉(zhuǎn),當OEOB重合時停止旋轉(zhuǎn).

1)當ODOAOC之間,且∠COD=20°時,則∠AOE=______

2)試探索:在△ODE旋轉(zhuǎn)過程中,∠AOD與∠COE大小的差是否發(fā)生變化?若不變,請求出這個差值;若變化,請說明理由;

3)在△ODE的旋轉(zhuǎn)過程中,若∠AOE=7COD,試求∠AOE的大。

查看答案和解析>>

同步練習冊答案