【題目】已知:如圖,等邊三角形ABC中,D、E分別是BCAC上的點(diǎn),且AE=CD,

1)求證:AD=BE

2)求:∠BFD的度數(shù).

【答案】1)見(jiàn)解析;(260°.

【解析】

1)根據(jù)等邊三角形各邊長(zhǎng)相等的性質(zhì)可得AB=AC,易證ABE≌△CAD可得AD=BE;

2)根據(jù)全等三角形對(duì)應(yīng)角相等可得∠ABE=CAD,進(jìn)而根據(jù)∠BFD=BAD+ABE即可求∠BFD的度數(shù).

(1)證明:∵△ABC是等邊三角形,

∴∠BAC=C=60°AB=CA,

ABECAD ,

ABE≌△CAD(SAS),

AD=BE(全等三角形對(duì)應(yīng)邊相等)

(2)∵△ABE≌△CAD(已證),

∴∠ABE=CAD(全等三角形對(duì)應(yīng)角相等),

又∵∠BFD=BAD+ABE,

∴∠BFD=BAD+CAD=BAC,

又∠BAC=60°,

∴∠BFD=60°.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知直線ABCD相交于點(diǎn)O,且∠AOD90°,現(xiàn)將一個(gè)直角三角尺的直角頂點(diǎn)放在點(diǎn)O處,把該直角三角尺OEF繞著點(diǎn)O旋轉(zhuǎn),作射線OH平分∠AOE

1)如圖1所示,當(dāng)∠DOE20°時(shí),∠FOH的度數(shù)是   

2)若將直角三角尺OEF繞點(diǎn)O旋轉(zhuǎn)至圖2的位置,試判斷∠FOH和∠BOE之間的數(shù)量關(guān)系,并說(shuō)明理由.

3)若再作射線OG平分∠BOF,試求∠GOH的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在如圖所示的正方形網(wǎng)格中,每個(gè)小正方形的邊長(zhǎng)為1,格點(diǎn)三角形(頂點(diǎn)是網(wǎng)格線的交點(diǎn)的三角形)ABC的頂點(diǎn)A,C的坐標(biāo)分別為A(-4,5),C(-1,3).

(1)請(qǐng)?jiān)谌鐖D所示的網(wǎng)格內(nèi)作出x軸、y軸;

(2)請(qǐng)作出ABC關(guān)于y軸對(duì)稱(chēng)的A1B1C1;

(3)寫(xiě)出點(diǎn)B1的坐標(biāo)并求出A1B1C1的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,在矩形ABCD中,AB=6cm,BC=8cm,對(duì)角線AC,BD交于點(diǎn)0.點(diǎn)P從點(diǎn)A出發(fā),沿方向勻速運(yùn)動(dòng),速度為1cm/s;同時(shí),點(diǎn)Q從點(diǎn)D出發(fā),沿DC方向勻速運(yùn)動(dòng),速度為1cm/s;當(dāng)一個(gè)點(diǎn)停止運(yùn)動(dòng)時(shí),另一個(gè)點(diǎn)也停止運(yùn)動(dòng).連接PO并延長(zhǎng),交BC于點(diǎn)E,過(guò)點(diǎn)QQFAC,交BD于點(diǎn)F.設(shè)運(yùn)動(dòng)時(shí)間為t(s)(0<t<6),解答下列問(wèn)題:

(1)當(dāng)t為何值時(shí),AOP是等腰三角形?

(2)設(shè)五邊形OECQF的面積為S(cm2),試確定St的函數(shù)關(guān)系式;

(3)在運(yùn)動(dòng)過(guò)程中,是否存在某一時(shí)刻t,使S五邊形S五邊形OECQF:SACD=9:16?若存在,求出t的值;若不存在,請(qǐng)說(shuō)明理由;

(4)在運(yùn)動(dòng)過(guò)程中,是否存在某一時(shí)刻t,使OD平分∠COP?若存在,求出t的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小明用尺規(guī)作圖作△ABC的邊AC上的高BH,作法如下:

分別以點(diǎn)DE為圓心,大于DE的一半的長(zhǎng)度為半徑作弧,兩弧交于點(diǎn)F;

作射線BF,交邊AC于點(diǎn)H

B為圓心,BK的長(zhǎng)為半徑作弧,交直線AC于點(diǎn)DE;

取一點(diǎn)K,使KBAC的兩側(cè);

所以BH就是所求作的高。

正確的作圖順序應(yīng)該是____________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知在平面直角坐標(biāo)系中有三點(diǎn)、,請(qǐng)回答如下問(wèn)題:

1)在坐標(biāo)系內(nèi)描出點(diǎn)的位置:

2)求出以三點(diǎn)為頂點(diǎn)的三角形的面積;

3)在軸上是否存在點(diǎn),使以三點(diǎn)為頂點(diǎn)的三角形的面積為10,若存在,請(qǐng)直接寫(xiě)出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知點(diǎn)A D C F在同一直線上,AB=DE,AD=CF,添加下列條件后,仍不能判斷△ABC≌△DEF的是 ( )

A. BC=EFB. A=EDFC. ABDED. BCA=F

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,在Rt△ABC中,∠C=90°,AC=6,BC=8,動(dòng)點(diǎn)P從點(diǎn)A開(kāi)始沿邊AC向點(diǎn)C以1個(gè)單位長(zhǎng)度的速度運(yùn)動(dòng),動(dòng)點(diǎn)Q從點(diǎn)C開(kāi)始沿邊CB向點(diǎn)B以每秒2個(gè)單位長(zhǎng)度的速度運(yùn)動(dòng),過(guò)點(diǎn)P作PD∥BC,交AB于點(diǎn)D,連接PQ分別從點(diǎn)A、C同時(shí)出發(fā),當(dāng)其中一點(diǎn)到達(dá)端點(diǎn)時(shí),另一點(diǎn)也隨之停止運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t秒(t≥0).

(1)直接用含t的代數(shù)式分別表示:QB=   ,PD=   

(2)是否存在t的值,使四邊形PDBQ為菱形?若存在,求出t的值;若不存在,說(shuō)明理由.并探究如何改變Q的速度(勻速運(yùn)動(dòng)),使四邊形PDBQ在某一時(shí)刻為菱形,求點(diǎn)Q的速度;

(3)如圖2,在整個(gè)運(yùn)動(dòng)過(guò)程中,求出線段PQ中點(diǎn)M所經(jīng)過(guò)的路徑長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)O在直線AB上,OCAB,△ODE中,∠ODE=90°,∠EOD=60°,先將△ODE一邊OEOC重合,然后繞點(diǎn)O順時(shí)針?lè)较蛐D(zhuǎn),當(dāng)OEOB重合時(shí)停止旋轉(zhuǎn).

1)當(dāng)ODOAOC之間,且∠COD=20°時(shí),則∠AOE=______;

2)試探索:在△ODE旋轉(zhuǎn)過(guò)程中,∠AOD與∠COE大小的差是否發(fā)生變化?若不變,請(qǐng)求出這個(gè)差值;若變化,請(qǐng)說(shuō)明理由;

3)在△ODE的旋轉(zhuǎn)過(guò)程中,若∠AOE=7COD,試求∠AOE的大。

查看答案和解析>>

同步練習(xí)冊(cè)答案