【題目】如圖,已知AE=CF,∠AFD=∠CEB,那么添加下列一個條件后,仍無法判定△ADF≌△CBE的是(

A. ∠A=∠C B. AD∥BC C. BE=DF D. AD=CB

【答案】D

【解析】分析:求出AF=CE,再根據(jù)全等三角形的判定定理判斷即可.

詳解AE=CF,

AE+EF=CF+EF,

AF=CE,

A、∵在ADFCBE

∴△ADF≌△CBE(ASA),正確,故本選項錯誤;

B、ADBC,

∴∠A=C,

∵在ADFCBE

∴△ADF≌△CBE(ASA),正確,故本選項錯誤;

C、∵在ADFCBE

∴△ADF≌△CBE(SAS),正確,故本選項錯誤;

D、根據(jù)AD=CB,AF=CE,AFD=CEB不能推出ADF≌△CBE,錯誤,故本選項正確;

故選D.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】閱讀材料:

材料1.若一元二次方程y=ax2+bx+c(a≠0)的兩根為x1,x2,則, .

材料2.已知實數(shù)mn滿足 ,且m≠n,求的值.

解:由m、n是方程x2-x-1=0的兩個不相等的實數(shù)根,根據(jù)材料1m+n=1,mn=-1

根據(jù)上述材料解決下面問題:

1)一元二次方程x2-4x-3=0的兩根為x1,x2,則x1+x2= , x1x2= ;

2)已知實數(shù)m,n滿足2n2-2n-1=0,且m≠n,求m2n+mn2的值;

3)已知實數(shù)pq滿足p2=3p+2、2q2=3q+1,且p≠2q,求p2+4q2的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在四邊形ABCD中,AB=AD. ∠B+∠ADC=180°,點E,F(xiàn)分別在四邊形ABCD的邊BC,CD上,∠EAF=∠BAD,連接EF,試猜想EF,BE,DF之間的數(shù)量關(guān)系.

圖1 圖2 圖3

(1)思路梳理

將△ABE繞點A逆時針旋轉(zhuǎn)至△ADG,使AB與AD重合.由∠B+∠ADC=180°,得∠FDG=180°,即點F,D,G三點共線. 易證△AFG ,故EF,BE,DF之間的數(shù)量關(guān)系為

(2)類比引申

如圖2,在圖1的條件下,若點E,F(xiàn)由原來的位置分別變到四邊形ABCD的邊CB,DC的延長線上,∠EAF=∠BAD,連接EF,試猜想EF,BE,DF之間的數(shù)量關(guān)系,并給出證明.

(3)聯(lián)想拓展

如圖3,在△ABC中,∠BAC=90°,AB=AC,點D,E均在邊BC上,且∠DAE=45°. 若BD=1,EC=2,則DE的長為 .

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,小剛將一個正方形紙片剪去一個寬為5cm的長條后,再從剩下的長方形紙片上剪去一個寬為6cm的長條,如果兩次剪下的長條面積正好相等,求兩個所剪下的長條的面積之和為( 。

A.215cm2B.250cm2C.300cm2D.320cm2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】購買甲、乙、丙三種不同品種的練習本各四次,其中,有一次購買時,三種練習本同時打折,四次購買的數(shù)量和費用如下表:

購買次數(shù)

購買各種練習本的數(shù)量(單位:本)

購買總費用(單位:元)

第一次

2

3

0

24

第二次

4

9

6

75

第三次

10

3

0

72

第四次

10

10

4

88

1)第______次購物時打折;練習本甲的標價是_____/本,練習本乙的標價是______/本,練習本丙的標價是______/本;

2)如果三種練習本的折扣相同,請問折扣是打幾折?

3)現(xiàn)有資金100.5元,全部用于購買練習本,計劃以標價購進練習本36本,如果購買其中兩種練習本,請你直接寫出一種購買方案,不需說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,等腰直角三角形AOB的直角頂點A在第四象限,頂點B0-2),點C0,1),點D在邊AB上,連接CDOA于點E,反比例函數(shù)的圖像經(jīng)過點D,若△ADE和△OCE的面積相等,則k的值為___________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】隨著科技的發(fā)展,某快遞公司為了提高分揀包裹的速度,使用機器人代替人工進行包裹分揀,若甲機器人工作,乙機器人工作,一共可以分揀700件包裹;若甲機器人工作,乙機器人工作,一共可以分揀650件包裹.

1)求甲、乙兩機器人每小時各分揀多少件包裹;

2)去年雙十一期間,快遞公司的業(yè)務(wù)量猛增,為了讓甲、乙兩機器人每天分揀包裹的總數(shù)量不低于2250件,則它們每天至少要一起工作多少小時?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】矩形與矩形如圖放置,點共線,共線,連接,取的中點,連接,若,則

A. B. C. 2D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】E、F、M、N分別是正方形ABCD四條邊上的點,AEBFCMDN,四邊形EFMN是什么圖形?證明你的結(jié)論.

查看答案和解析>>

同步練習冊答案