【題目】如圖所示,在平面直角坐標系xOy中,△ABC的頂點坐標分別是A(-2,3),B(m-1,1),C(1,-2),點B關于x軸的對稱點P的坐標為(-3,n-2).
(1)求m,n的值;
(2)畫出△ABC,并求出它的面積;
(3)畫出與△ABC關于y軸成軸對稱的圖形△A1B1C1,并寫出△A1B1C1,各個頂點的坐標.
【答案】(1)m=-2,n=1;(2)畫圖見解析,S△ABC=;(3)畫圖見解析;A1(2,3),B1(3,1),C1(-1,-2).
【解析】
(1)根據(jù)關于x軸對稱的點的坐標特征:橫坐標不變,縱坐標互為相反數(shù)列方程即可求出m、n的值;
(2)根據(jù)A、B、C三點坐標即可畫出圖形;利用△ABC所在長方形的面積減去三個三角形的面積即可得答案;
(3)根據(jù)關于y軸對稱的點的坐標特征:縱坐標不變,橫坐標互為相反數(shù)即可得出A1、B1、C1的坐標,順次連接三點即可得△A1B1C1.
(1)∵點B關于x軸的對稱點P的坐標為(-3,n-2),B(m-1,1),
∴m-1=-3,n-2=-1,
解得:m=-2,n=1.
(2)∵m=-2,
∴B(-3,1)
∴如圖,△ABC即為所求,
∵A(-2,3),B(-3,1),C(1,-2),
∴S△ABC=4×5-×2×1-×3×4-×3×5=.
(3)∵△ABC與△A1B1C1關于y軸對稱,
∴A1(2,3),B1(3,1),C1(-1,-2),
∴△A1B1C1即為所求.
科目:初中數(shù)學 來源: 題型:
【題目】(問題解決)
一節(jié)數(shù)學課上,老師提出了這樣一個問題:如圖1,點P是正方形ABCD內一點,PA=1,PB=2,PC=3.你能求出∠APB的度數(shù)嗎?
小明通過觀察、分析、思考,形成了如下思路:
思路一:將△BPC繞點B逆時針旋轉90°,得到△BP′A,連接PP′,求出∠APB的度數(shù);
思路二:將△APB繞點B順時針旋轉90°,得到△CP'B,連接PP′,求出∠APB的度數(shù).
請參考小明的思路,任選一種寫出完整的解答過程.
(類比探究)
如圖2,若點P是正方形ABCD外一點,PA=3,PB=1,PC=,求∠APB的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某小學學生較多,為了便于學生盡快就餐,師生約定:早餐一人一份,一份兩樣,一樣一個,食堂師傅在窗口隨機發(fā)放(發(fā)放的食品價格一樣),食堂在某天早餐提供了豬肉包、面包、雞蛋、油餅四樣食品.
(1)按約定,“小李同學在該天早餐得到兩個油餅”是 事件;(可能,必然,不可能)
(2)請用列表或樹狀圖的方法,求出小張同學該天早餐剛好得到豬肉包和油餅的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,AC=BC,點O在AB上,經(jīng)過點A的⊙O與BC相切于點D,交AB于點E.
(1)求證:AD平分∠BAC;
(2)若CD=1,求圖中陰影部分的面積(結果保留π).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知在平面直角坐標系xOy中,O是坐標原點,如圖1,直角三角板△MON中,OM=ON=,OQ=1,直線l過點N和點N,拋物線y=ax2+x+c過點Q和點N.
(1)求出該拋物線的解析式;
(2)已知點P是拋物線y=ax2+x+c上的一個動點.
①初步嘗試
若點P在y軸右側的該拋物線上,如圖2,過點P作PA⊥y軸于點A,問:是否存在點P,使得以N、P、A為頂點的三角形與△ONQ相似.若存在,求出點P的坐標,若不存在,請說明理由;
②深入探究
若點P在第一象限的該拋物線上,如圖3,連結PQ,與直線MN交于點G,以QG為直徑的圓交QN于點H,交x軸于點R,連結HR,求線段HR的最小值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知關于x的一元二次方程x2+(k﹣5)x+1﹣k=0(其中k為常數(shù)).
(1)求證無論k為何值,方程總有兩個不相等實數(shù)根;
(2)已知函數(shù)y=x2+(k﹣5)x+1﹣k的圖象不經(jīng)過第三象限,求k的取值范圍;
(3)若原方程的一個根大于3,另一個根小于3,求k的最大整數(shù)值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,點A、B、C分別是⊙O上不重合的三點,連接AC、BC.
(1)如圖2,點P是直線AB上方且在⊙O外的任意一點, 連接AP、BP.試比較∠APB與∠ACB的大小關系,并說明理由;
(2) 若點P是⊙O內任意一點, 連接AP、BP,比較∠APB與∠ACB大小關系;
(3)如圖3,在平面直角坐標系xOy中,點A與點B的坐標分別是(1,0),(5,0),點P是直線y=-x上一動點,當∠APB取得最大值時,直接寫出點P的坐標,并簡要說明點P的位置是如何確定的.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某商貿公司有、兩種型號的商品需運出,這兩種商品的體積和質量分別如下表所示:
體積(立方米/件) | 質量(噸/件) | |
型商品 | 0.8 | 0.5 |
型商品 | 2 | 1 |
(1)已知一批商品有、兩種型號,體積一共是20立方米,質量一共是10.5噸,求、兩種型號商品各有幾件?
(2)物資公司現(xiàn)有可供使用的貨車每輛額定載重3.5噸,容積為6立方米,其收費方式有以下兩種:
①按車收費:每輛車運輸貨物到目的地收費600元;
②按噸收費:每噸貨物運輸?shù)侥康牡厥召M200元.
現(xiàn)要將(1)中商品一次或分批運輸?shù)侥康牡兀绻麅煞N收費方式可混合使用,商貿公司應如何選擇運送、付費方式,使其所花運費最少,最少運費是多少元?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com