如圖,已知拋物線y=x2-1與x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C.
(1)求A、B、C三點(diǎn)的坐標(biāo).
(2)過點(diǎn)A作AP∥CB交拋物線于點(diǎn)P,求四邊形ACBP的面積.
(3)在軸上方的拋物線上是否存在一點(diǎn)M,過M作MG軸于點(diǎn)G,使以A、M、G三點(diǎn)為頂點(diǎn)的三角形與PCA相似.若存在,請求出M點(diǎn)的坐標(biāo);否則,請說明理由.
(1) A(-1,0),B(1,0),C(0,-1);(2)4;(3)(-2,3),(,),(4,15).
【解析】
試題分析:(1)拋物線與x軸的交點(diǎn),即當(dāng)y=0,C點(diǎn)坐標(biāo)即當(dāng)x=0,分別令y以及x為0求出A,B,C坐標(biāo)的值;
(2)四邊形ACBP的面積=△ABC+△ABP,由A,B,C三點(diǎn)的坐標(biāo),可知△ABC是直角三角形,且AC=BC,則可求出△ABC的面積,根據(jù)已知可求出P點(diǎn)坐標(biāo),可知AP的長度,以及點(diǎn)B到直線的距離,從而求出△ABP的面積,則就求出四邊形ACBP的面積;
(3)假設(shè)存在這樣的點(diǎn)M,兩個(gè)三角形相似,根據(jù)題意以及上兩題可知,∠PAC∠和∠MGA是直角,只需證明或即可.設(shè)M點(diǎn)坐標(biāo),根據(jù)題中所給條件可求出線段AG,CA,MG,CA的長度,然后列等式,分情況討論,求解.
試題解析: (1)令y=0,
得x2-1=0
解得x=±1,
令x=0,得y=-1
∴A(-1,0),B(1,0),C(0,-1);
(2)∵OA=OB=OC=1,
∴∠BAC=∠ACO=∠BCO=45°.
∵AP∥CB,
∴∠PAB=45°.
過點(diǎn)P作PE⊥x軸于E,則△APE為等腰直角三角形,
令OE=A,則PE=A+1,
∴P(A,A+1).
∵點(diǎn)P在拋物線y=x2-1上,
∴A+1=A2-1.
解得A1=2,A2=-1(不合題意,舍去).
∴PE=3.
∴四邊形ACBP的面積S=AB•OC+AB•PE=×2×1+×2×3=4;
(3)假設(shè)存在
∵∠PAB=∠BAC=45°,
∴PA⊥AC
∵MG⊥x軸于點(diǎn)G,
∴∠MGA=∠PAC=90°
在Rt△AOC中,OA=OC=1,
∴AC=
在Rt△PAE中,AE=PE=3,
∴AP=3
設(shè)M點(diǎn)的橫坐標(biāo)為m,則M(m,m2-1)
①點(diǎn)M在y軸左側(cè)時(shí),則m<-1.
(ⅰ)當(dāng)△AMG∽△PCA時(shí),有.
∵AG=-m-1,MG=m2-1.
即
解得m1=-1(舍去)m2=(舍去).
(ⅱ)當(dāng)△MAG∽△PCA時(shí)有,
即.
解得:m=-1(舍去)m2=-2.
∴M(-2,3)(10分).
②點(diǎn)M在y軸右側(cè)時(shí),則m>1
(ⅰ)當(dāng)△AMG∽△PCA時(shí)有
∵AG=m+1,MG=m2-1
∴
解得m1=-1(舍去)m2=.
∴M(,).
(ⅱ)當(dāng)△MAG∽△PCA時(shí)有,
即.
解得:m1=-1(舍去)m2=4,
∴M(4,15).
∴存在點(diǎn)M,使以A、M、G三點(diǎn)為頂點(diǎn)的三角形與△PCA相似
M點(diǎn)的坐標(biāo)為(-2,3),(,),(4,15).
考點(diǎn): 二次函數(shù)綜合題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com