【題目】如圖,有一個不定的正方形ABCD,它的兩個相對的頂點A,C分別在邊長為1的正六邊形一組對邊上,另外兩個頂點B,D在正六邊形內(nèi)部(包括邊界),則正方形邊長a的取值范圍是
【答案】
( )
【解析】解:因為AC為對角線,故當(dāng)AC最小時,正方形邊長此時最小.
①當(dāng) A、C都在對邊中點時(如下圖所示位置時),顯然AC取得最小值,
∵正六邊形的邊長為1,
∴AC=,
∴a2+a2=AC2=.
∴a==.
②當(dāng)正方形四個頂點都在正六邊形的邊上時,a最大(如下圖所示).
設(shè)A′(t,)時,正方形邊長最大.
∵OB′⊥OA′.
∴B′(- , t)
設(shè)直線MN解析式為:y=kx+b,M(-1,0),N(- , -)(如下圖)
∴.
∴.
∴直線MN的解析式為:y=(x+1),
將B′(- , t)代入得:t=-.
此時正方形邊長為A′B′取最大.
∴a==3-.
故答案為:≤a≤3-.
分情況討論.① 當(dāng)A、C都在對邊中點時,a最小.②當(dāng)正方形四個頂點都在正六邊形的邊上時,a最大.根據(jù)題意求出正方形對角線的長度,再根據(jù)勾股定理即可求出a.從而得出a的范圍.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,△ABC 是等腰直角三角形,BC=AB,A 點在 x 負(fù)半軸上,直角頂點 B 在 y 軸上,點 C 在 x 軸上方.
(1)如圖1所示,若A的坐標(biāo)是(﹣3,0),點 B的坐標(biāo)是(0,1),求點 C 的坐標(biāo);
(2)如圖2,過點 C 作 CD⊥y 軸于 D,請直接寫出線段OA,OD,CD之間等量關(guān)系;
(3)如圖3,若 x 軸恰好平分∠BAC,BC與 x 軸交于點 E,過點 C作 CF⊥x 軸于 F,問 CF 與 AE 有怎樣的數(shù)量關(guān)系?并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校要從甲、乙兩名同學(xué)中挑選一人參加創(chuàng)新能力大賽,在最近的五次選拔測試中, 他倆的成績分別如下表,請根據(jù)表中數(shù)據(jù)解答下列問題:
第 1 次 | 第 2 次 | 第 3 次 | 第 4 次 | 第 5 次 | 平均分 | 眾數(shù) | 中位數(shù) | 方差 | |
甲 | 60 分 | 75 分 | 100 分 | 90 分 | 75 分 | 80 分 | 75 分 | 75 分 | 190 |
乙 | 70 分 | 90 分 | 100 分 | 80 分 | 80 分 | 80 分 | 80 分 |
(1)把表格補(bǔ)充完整:
(2)在這五次測試中,成績比較穩(wěn)定的同學(xué)是多少;若將 80 分以上(含 80 分) 的成績視為優(yōu)秀,則甲、乙兩名同學(xué)在這五次測試中的優(yōu)秀率分別是多少;
(3)歷屆比賽表明,成績達(dá)到80分以上(含 80分)就很可能獲獎,成績達(dá)到 90分以上(含90分)就很可能獲得一等獎,那么你認(rèn)為選誰參加比賽比較合適?說明你的理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,E是直線AB,CD內(nèi)部一點,AB∥CD,連接EA,ED.
(1)探究猜想:①若∠A=30°,∠D=40°,則∠AED等于多少度?
②若∠A=20°,∠D=60°,則∠AED等于多少度?
③猜想圖1中∠AED,∠EAB,∠EDC的關(guān)系并證明你的結(jié)論.
(2)拓展應(yīng)用:如圖2,線段FE與長方形ABCD的邊AB交于點E,與邊CD 交于點F.圖2中①②分別是被線段FE隔開的2個區(qū)域(不含邊界),P是位于以上兩個區(qū)域內(nèi)的一點,猜想∠PEB,∠PFC,∠EPF的關(guān)系(不要求說明理由).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖1所示,在△ABC中,EF∥BC,點D在EF上,BD、CD分別平分∠ABC、∠ACB,若已知BE=3,CF=5,求EF的長度;
(2)如圖2所示,BD平分∠ABC、CD平分∠ACG,DE∥BC交AB于點E,交AC于點F,線段EF與BE、CF有什么數(shù)量關(guān)系?并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小軍同學(xué)在學(xué)校組織的社會調(diào)查活動中負(fù)責(zé)了解他所居住的小區(qū)450戶居民的生活用水情況,他從中隨機(jī)調(diào)查了50戶居民的月均用水量(單位:t),并繪制了樣本的頻數(shù)分布表和頻數(shù)分布直方圖(如圖).
(1)請根據(jù)題中已有的信息補(bǔ)全頻數(shù)分布表和頻數(shù)分布直方圖;
月均用水量/t | 頻數(shù) | 百分比 |
2≤x<3 | 2 | 4% |
3≤x<4 | 12 | 24% |
4≤x<5 | ||
5≤x<6 | 10 | 20% |
6≤x<7 | 12% | |
7≤x<8 | 3 | 6% |
8≤x<9 | 2 | 4% |
(2)如果家庭月均用水量“大于或等于4 t且小于7 t”為中等用水量家庭,請你通過樣本估計總體中的中等用水量家庭大約有多少戶.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖, 是 的中線, 是線段 上一點(不與點 重合). 交 于點 , ,連結(jié) .
(1)如圖1,當(dāng)點 與 重合時,求證:四邊形 是平行四邊形;
(2)如圖2,當(dāng)點 不與 重合時,(1)中的結(jié)論還成立嗎?請說明理由.
(3)如圖3,延長 交 于點 ,若 ,且 .當(dāng) , 時,求 的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,過原點O及點A(8,0),C(0,6)作矩形OABC,連結(jié)OB,D為OB的中點。點E是線段AB上的動點,連結(jié)DE,作DF⊥DE,交OA于點F,連結(jié)EF。已知點E從A點出發(fā),以每秒1個單位長度的速度在線段AB上移動,設(shè)移動時間為t秒。
(1)如圖1,當(dāng)t=3時,求DF的長;
(2)如圖2,當(dāng)點E在線段AB上移動的過程中,∠DEF的大小是否發(fā)生變化?如果變化,請說明理由;如果不變,請求出tan∠DEF的值;
(3)連結(jié)AD,當(dāng)AD將△DEF分成的兩部分面積之比為1:2時,求相應(yīng)t的值。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一個不透明袋子中有1個紅球、1 個綠球和n個白球,這些球除顏色外都相同.
(1)從袋中隨機(jī)摸出1個球,記錄下顏色后放回袋子中并攪勻,不斷重復(fù)該試驗.發(fā)現(xiàn)摸到白球的頻率穩(wěn)定在0.75,則n的值為;
(2)當(dāng)n=2時,把袋中的球攪勻后任意摸出2個球,求摸出的2個球顏色不同的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com