【題目】如圖,△ABC中,AB=AC,以AB為直徑的⊙O交BC邊于點(diǎn)D,連接AD,過(guò)D作AC的垂線,交AC邊于點(diǎn)E,交AB 邊的延長(zhǎng)線于點(diǎn)F.
(1)求證:EF是⊙O的切線;
(2)若∠F=30°,BF=3,求弧AD的長(zhǎng).
【答案】(1)見(jiàn)解析;(2)2π.
【解析】
(1)根據(jù)圓周角定理求出AD⊥BC,得出AD平分∠BAC,即可推出OD∥AC,推出OD⊥EF,根據(jù)切線的判定推出即可.
(2)由OD⊥DF得∠ODF=90°,利用含30度的直角三角形三邊的關(guān)系OF=2OD,即OB+3=2OD,可解得OD=3,再計(jì)算出∠AOD=90°+∠F=120°,然后根據(jù)弧長(zhǎng)公式求解.
證明:(1)連接AD,OD,
∵AB是直徑,
∴∠ADB=90°,
即AD⊥BC,
∵AB=AC,
∴AD平分∠BAC,
∴∠OAD=∠CAD,
∵OA=OD,
∴∠OAD=∠ODA,
∴∠ODA=∠CAD,
∴OD∥AC,
∵DE⊥AC,
∴OD⊥EF,
∵OD過(guò)O,
∴EF是⊙O的切線.
(2)∵OD⊥DF,
∴∠ODF=90°,
∵∠F=30°,
∴OF=2OD,即OB+3=2OD,
而OB=OD,
∴OD=3,
∵∠AOD=90°+∠F=90°+30°=120°,
∴的長(zhǎng)度=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,在同一平面直角坐標(biāo)系中,表示函數(shù)y=ax+b與y=的圖象可能是( 。
A. B.
C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB=AC,∠BAC=90°,直角∠EPF的頂點(diǎn)P是BC中點(diǎn),PE,PF分別交AB,AC于點(diǎn)E,F(xiàn),給出下列四個(gè)結(jié)論:①△APE≌△CPF;②AE=CF;③△EAF是等腰直角三角形;④S△ABC=2S四邊形AEPF,上述結(jié)論正確的有( )
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知⊙O的半徑為10,圓心O到弦AB的距離為5,則弦AB所對(duì)的圓周角的度數(shù)是( )
A. 30° B. 60° C. 30°或150° D. 60°或120°
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在Rt△ABC中,∠ACB=90°,BC=a,AC=b,AB=c.將Rt△ABC繞點(diǎn)O依次旋轉(zhuǎn)90°、180°和270°,構(gòu)成的圖形如圖所示.該圖是我國(guó)古代數(shù)學(xué)家趙爽制作的“勾股圓方圖”,也被稱作“趙爽弦圖”,它是我國(guó)最早對(duì)勾股定理證明的記載,也成為了2002年在北京召開(kāi)的國(guó)際數(shù)學(xué)家大會(huì)的會(huì)標(biāo)設(shè)計(jì)的主要依據(jù).
(1)請(qǐng)利用這個(gè)圖形證明勾股定理;
(2)請(qǐng)利用這個(gè)圖形說(shuō)明a2+b2≥2ab,并說(shuō)明等號(hào)成立的條件;
(3)請(qǐng)根據(jù)(2)的結(jié)論解決下面的問(wèn)題:長(zhǎng)為x,寬為y的長(zhǎng)方形,其周長(zhǎng)為8,求當(dāng)x,y取何值時(shí),該長(zhǎng)方形的面積最大?最大面積是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知Rt△ABC中,∠C=90°,∠A、∠B、∠C的對(duì)邊分別是a,b,c,設(shè)△ABC的面積為S.
(1)填表:
三邊a,b,c | S | c+b-a | c-b+a |
3,4,5 | 6 | ||
5,12,13 | 20 | ||
8,15,17 | 24 |
(2)①如果m=(c+b-a)(c-b+a),觀察上表猜想S與m之間的數(shù)量關(guān)系,并用等式表示出來(lái).
②證明①中的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖分別是某班全體學(xué)生上學(xué)時(shí)乘車、步行、騎車人數(shù)的分布直方圖和扇形統(tǒng)計(jì)圖(兩圖都不完整),下列結(jié)論錯(cuò)誤的是( )
A. 該班總?cè)藬?shù)為50人B. 步行人數(shù)為30人
C. 乘車人數(shù)是騎車人數(shù)的2.5倍D. 騎車人數(shù)占20%
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】把所有正奇數(shù)從小到大排列,并按如下規(guī)律分組:(1),(3,5,7),(9,11,13,15,17),(19,21,23,25,27,29,31),…,現(xiàn)有等式Am=(i,j)表示正奇數(shù)m是第i組第j個(gè)數(shù)(從左往右數(shù)),如A7=(2,3),則A2017=( 。
A. (31,51) B. (32,48) C. (33,47) D. (34,43)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖(1),Rt△AOB中,∠A=90°,∠AOB=60°,OB=2,∠AOB的平分線OC交AB于C,過(guò)O點(diǎn)作與OB垂直的直線ON.動(dòng)點(diǎn)P從點(diǎn)B出發(fā)沿折線BC﹣CO以每秒1個(gè)單位長(zhǎng)度的速度向終點(diǎn)O運(yùn)動(dòng),運(yùn)動(dòng)時(shí)間為t秒,同時(shí)動(dòng)點(diǎn)Q從點(diǎn)C出發(fā)沿折線CO﹣ON以相同的速度運(yùn)動(dòng),當(dāng)點(diǎn)P到達(dá)點(diǎn)O時(shí)P、Q同時(shí)停止運(yùn)動(dòng).
(1)求OC、BC的長(zhǎng);
(2)當(dāng)t=1時(shí),求△CPQ的面積;
(3)當(dāng)P在OC上Q在ON上運(yùn)動(dòng)時(shí),如圖(2),設(shè)PQ與OA交于點(diǎn)M,當(dāng)t為何值時(shí),△OPM為等腰三角形?求出所有滿足條件的t值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com