【題目】如圖,ABC中,AB=AC,以AB為直徑的O交BC邊于點(diǎn)D,連接AD,過(guò)D作AC的垂線,交AC邊于點(diǎn)E,交AB 邊的延長(zhǎng)線于點(diǎn)F.

(1)求證:EF是O的切線;

(2)若F=30°,BF=3,求弧AD的長(zhǎng).

【答案】(1)見(jiàn)解析;(2)2π.

【解析】

(1)根據(jù)圓周角定理求出ADBC,得出AD平分∠BAC,即可推出ODAC,推出ODEF,根據(jù)切線的判定推出即可.
(2)由ODDF得∠ODF=90°,利用含30度的直角三角形三邊的關(guān)系OF=2OD,即OB+3=2OD,可解得OD=3,再計(jì)算出∠AOD=90°+F=120°,然后根據(jù)弧長(zhǎng)公式求解.

證明:(1)連接AD,OD,

AB是直徑,

∴∠ADB=90°,

ADBC,

AB=AC,

AD平分∠BAC,

∴∠OAD=CAD,

OA=OD,

∴∠OAD=ODA,

∴∠ODA=CAD,

ODAC,

DEAC,

ODEF,

OD過(guò)O,

EF是⊙O的切線.

(2)ODDF,

∴∠ODF=90°,

∵∠F=30°,

OF=2OD,即OB+3=2OD,

OB=OD,

OD=3,

∵∠AOD=90°+F=90°+30°=120°,

的長(zhǎng)度=.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,在同一平面直角坐標(biāo)系中,表示函數(shù)y=ax+by=的圖象可能是( 。

A. B.

C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,AB=AC,BAC=90°,直角∠EPF的頂點(diǎn)PBC中點(diǎn),PE,PF分別交AB,AC于點(diǎn)E,F(xiàn),給出下列四個(gè)結(jié)論:①△APE≌△CPF;AE=CF;③△EAF是等腰直角三角形;④SABC=2S四邊形AEPF,上述結(jié)論正確的有( )

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知⊙O的半徑為10,圓心O到弦AB的距離為5,則弦AB所對(duì)的圓周角的度數(shù)是(  )

A. 30° B. 60° C. 30°150° D. 60°120°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】RtABC中,∠ACB90°,BCaACb,ABc.將RtABC繞點(diǎn)O依次旋轉(zhuǎn)90°、180°和270°,構(gòu)成的圖形如圖所示.該圖是我國(guó)古代數(shù)學(xué)家趙爽制作的“勾股圓方圖”,也被稱作“趙爽弦圖”,它是我國(guó)最早對(duì)勾股定理證明的記載,也成為了2002年在北京召開(kāi)的國(guó)際數(shù)學(xué)家大會(huì)的會(huì)標(biāo)設(shè)計(jì)的主要依據(jù).

1)請(qǐng)利用這個(gè)圖形證明勾股定理;

2)請(qǐng)利用這個(gè)圖形說(shuō)明a2b22ab,并說(shuō)明等號(hào)成立的條件;

3)請(qǐng)根據(jù)(2)的結(jié)論解決下面的問(wèn)題:長(zhǎng)為x,寬為y的長(zhǎng)方形,其周長(zhǎng)為8,求當(dāng)x,y取何值時(shí),該長(zhǎng)方形的面積最大?最大面積是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知RtABC中,∠C=90°,∠A、B、C的對(duì)邊分別是a,bc,設(shè)ABC的面積為S

1)填表:

三邊ab,c

S

c+b-a

c-b+a

3,45

6

5,12,13

20

8,15,17

24

2)①如果m=(c+b-a)(c-b+a),觀察上表猜想Sm之間的數(shù)量關(guān)系,并用等式表示出來(lái).

②證明①中的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖分別是某班全體學(xué)生上學(xué)時(shí)乘車、步行、騎車人數(shù)的分布直方圖和扇形統(tǒng)計(jì)圖(兩圖都不完整),下列結(jié)論錯(cuò)誤的是(

A. 該班總?cè)藬?shù)為50B. 步行人數(shù)為30

C. 乘車人數(shù)是騎車人數(shù)的2.5D. 騎車人數(shù)占20%

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】把所有正奇數(shù)從小到大排列,并按如下規(guī)律分組:(1),(3,5,7),(9,11,13,15,17),(19,21,23,25,27,29,31),…,現(xiàn)有等式Am=(i,j)表示正奇數(shù)m是第i組第j個(gè)數(shù)(從左往右數(shù)),如A7=(2,3),則A2017=( 。

A. (31,51) B. (32,48) C. (33,47) D. (34,43)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖(1),RtAOB中,∠A90°,∠AOB60°,OB2,∠AOB的平分線OCABC,過(guò)O點(diǎn)作與OB垂直的直線ON.動(dòng)點(diǎn)P從點(diǎn)B出發(fā)沿折線BCCO以每秒1個(gè)單位長(zhǎng)度的速度向終點(diǎn)O運(yùn)動(dòng),運(yùn)動(dòng)時(shí)間為t秒,同時(shí)動(dòng)點(diǎn)Q從點(diǎn)C出發(fā)沿折線COON以相同的速度運(yùn)動(dòng),當(dāng)點(diǎn)P到達(dá)點(diǎn)O時(shí)P、Q同時(shí)停止運(yùn)動(dòng).

1)求OCBC的長(zhǎng);

2)當(dāng)t1時(shí),求△CPQ的面積;

3)當(dāng)POCQON上運(yùn)動(dòng)時(shí),如圖(2),設(shè)PQOA交于點(diǎn)M,當(dāng)t為何值時(shí),△OPM為等腰三角形?求出所有滿足條件的t值.

查看答案和解析>>

同步練習(xí)冊(cè)答案