【題目】如圖,ABC,AB=AC,BAC=120°,DE垂直平分ACBCD,垂足為E,DE=2cm,BC的長為(

A. 6cm B. 8cm C. 10cm D. 12cm

【答案】D

【解析】

首先連接AD,由DE垂直平分AC,可得AD=CD,由△ABC中,AB=AC,∠BAC=120°,可求得∠B=∠C=∠DAC=30°,繼而求得ADCD的長,則可求得BD的長,繼而求得答案.

連接AD,

∵△ABC,AB=AC,∠BAC=120°,

∴∠B=∠C=30°,

∵DE垂直平分AC,

∴AD=CD,

∴∠DAC=∠C=30°,

∴AD=CD=2DE=2×2=4(cm),

∴∠BAD=∠BAC∠DAC=90°,

∴BD=2AD=8(cm),

∴BC=BD+CD=12(cm).

故答案選D.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線y=﹣x2+2x+3與x軸相交于A、B兩點,與y軸交于點C,頂點為D,拋物線的對稱軸DF與BC相交于點E,與x軸相交于點F.

(1)求線段DE的長;
(2)設過E的直線與拋物線相交于點M(x1 , y1),N(x2 , y2),試判斷當|x1﹣x2|的值最小時,直線MN與x軸的位置關(guān)系,并說明理由;
(3)設P為x軸上的一點,∠DAO+∠DPO=∠α,當tan∠α=4時,求點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形網(wǎng)格中小方格邊長為1,請你根據(jù)所學的知識解決下面問題

1)求網(wǎng)格圖中ABC的面積

2)判斷ABC是什么形狀?并所明理由

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】解不等式組和分式方程:
(1) ;
(2)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某小商場以每件20元的價格購進一種服裝,先試銷一周,試銷期間每天的銷量(件)與每件的銷售價x(元/件)如下表:

x(元/件)

38

36

34

32

30

28

26

t(件)

4

8

12

16

20

24

28

假定試銷中每天的銷售量t(件)與銷售價x(元/件)之間滿足一次函數(shù).
(1)試求t與x之間的函數(shù)關(guān)系式;
(2)在商品不積壓且不考慮其它因素的條件下,每件服裝的銷售定價為多少時,該小商場銷售這種服裝每天獲得的毛利潤最大?每天的最大毛利潤是多少?(注:每件服裝銷售的毛利潤=每件服裝的銷售價﹣每件服裝的進貨價)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某零件如圖所示,圖紙要求∠A=90°,B=32°,C=21°,當檢驗員量得∠BDC=145°,就斷定這個零件不合格,你能說出其中的道理嗎?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一次函數(shù)y=x+m的圖象與x軸和y軸分別交于點A和點B,與正比例函數(shù)圖象交于點P(2,n).

(1)mn的值;

(2)POB的面積;

(3)在直線OP上是否存在異與點P的另一點C,使得OBCOBP的面積相等?若存在,請求出C點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】解下列方程:
(1)(3x+5)2﹣(x﹣9)2=0;
(2)3x2﹣4x﹣1=0.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,,,點軸上,且.

(1)求點的坐標,并畫出;

(2)的面積;

(3)軸上是否存在點,使以三點為頂點的三角形的面積為10?若存在,請直接寫出點的坐標;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案