【題目】如圖,正方形ABCD的邊長為a,動點P從點A出發(fā),沿折線A→B→D→C→A的路徑運動,回到點A時運動停止.設點P運動的路程長為x,AP長為y,則y關于x的函數(shù)圖象大致是( )
A.
B.
C.
D.
【答案】D
【解析】解:設動點P按沿折線A→B→D→C→A的路徑運動,
∵正方形ABCD的邊長為a,
∴BD= a,
①當P點在AB上,即0≤x<a時,y=x,
②當P點在BD上,即a≤x<(1+ )a時,過P點作PF⊥AB,垂足為F,
∵AB+BP=x,AB=a,
∴BP=x﹣a,
∵AE2+PE2=AP2 ,
∴( )2+[ a﹣(x﹣a)]2=y2 ,
∴y= ,
③當P點在DC上,即a(1+ )≤x<a(2+ )時,同理根據(jù)勾股定理可得AP2=AD2+DP2 ,
y= ,
④當P點在CA上,即當a(2+ )≤x≤a(2+2 )時,y=a(2+2 )﹣x,
結(jié)合函數(shù)解析式可以得出第2,3段函數(shù)解析式不同,得出A選項一定錯誤,
根據(jù)當a≤x<(1+ )a時,P在BE上和ED上時的函數(shù)圖象對稱,故B選項錯誤,
再利用第4段函數(shù)為一次函數(shù)得出,故C選項一定錯誤,
故只有D符合要求,
故選:D.
【考點精析】認真審題,首先需要了解函數(shù)的圖象(函數(shù)的圖像是由直角坐標系中的一系列點組成;圖像上每一點坐標(x,y)代表了函數(shù)的一對對應值,他的橫坐標x表示自變量的某個值,縱坐標y表示與它對應的函數(shù)值).
科目:初中數(shù)學 來源: 題型:
【題目】某校九年級數(shù)學興趣小組的同學調(diào)查了若干名家長對“初中學生帶手機上學”現(xiàn)象的看法,統(tǒng)計整理并制作了如下的條形統(tǒng)計圖與扇形統(tǒng)計圖:依據(jù)圖中信息,得出下列結(jié)論:
(1)接受這次調(diào)查的家長人數(shù)為200人;
(2)在扇形統(tǒng)計圖中,“不贊同”的家長部分所對應的扇形圓心角大小為162°;
(3)表示“無所謂”的家長人數(shù)為40人;
(4)隨機抽查一名接受調(diào)查的家長,恰好抽到“很贊同”的家長的概率是 .
其中正確的結(jié)論個數(shù)為( )
A.4
B.3
C.2
D.1
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,Rt△ABC中,∠B=90°,AB=6,BC=9,將△ABC折疊,使點C與AB的中點D重合,折痕交AC于點M,交BC于點N.
(1)求線段BN的長;
(2)連接CD,與MN交于點E,寫出與點E相關的兩個正確結(jié)論:① ;
② .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在△ABC中,∠C=90°,AC=BC.作射線AP,過點B作BD⊥AP于點D,連接CD.
(1)當射線AP位于圖1所示的位置時
①根據(jù)題意補全圖形;
②求證:AD+BD=CD.
(2)當射線AP繞點A由圖1的位置順時針旋轉(zhuǎn)至∠BAC的內(nèi)部,如圖2,直接寫出此時AD,BD,CD三條線段之間的數(shù)量關系為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,三角形BCO是三角形BAO經(jīng)過某種變換得到的.
(1)寫出A,C的坐標;
(2)圖中A與C的坐標之間的關系是什么?
(3)如果三角形AOB中任意一點M的坐標為(x,y),那么它的對應點N的坐標是什么?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知四邊形ABCD是矩形,把矩形沿直線AC折疊,點B落在點E處,連接DE.若DE:AC=3:5,則 的值為( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】
【合作學習】
如圖,矩形ABOD的兩邊OB,OD都在坐標軸的正半軸上,OD=3,另兩邊與反比例函數(shù)y= (k≠0)的圖象分別相交于點E,F(xiàn),且DE=2.過點E作EH⊥x軸于點H,過點F作FG⊥EH于點G.回答下面的問題:
①該反比例函數(shù)的解析式是什么?
②當四邊形AEGF為正方形時,點F的坐標是多少?
(1)閱讀合作學習內(nèi)容,請解答其中的問題;
(2)小亮進一步研究四邊形AEGF的特征后提出問題:“當AE>EG時,矩形AEGF與矩形DOHE能否全等?能否相似?”
針對小亮提出的問題,請你判斷這兩個矩形能否全等?直接寫出結(jié)論即可;這兩個矩形能否相似?若能相似,求出相似比;若不能相似,試說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一次函數(shù)的圖像分別與軸、軸交于點、,以線段為邊在第一象限內(nèi)作等腰直角三角形,,則過、兩點的直線對應的函數(shù)表達式為________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com