【題目】如圖,Rt△ABC中,∠B=90°,AB=6,BC=9,將△ABC折疊,使點C與AB的中點D重合,折痕交AC于點M,交BC于點N.
(1)求線段BN的長;
(2)連接CD,與MN交于點E,寫出與點E相關的兩個正確結論:① ;
② .
科目:初中數(shù)學 來源: 題型:
【題目】在手工制作課上,老師組織七年級(2)班的學生用硬紙制作圓柱形茶葉筒.七年級(2)班共有學生44人,其中男生人數(shù)比女生人數(shù)少2人,并且每名學生每小時剪筒身50個或剪筒底120個.
(1)七年級(2)班有男生、女生各多少人?
(2)要求一個筒身配兩個筒底,為了使每小時剪出的筒身與筒底剛好配套,應該分配多少名學生剪筒身,多少名學生剪筒底?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在ABC中, A=80, ABC與ACD的平分線交于點A1,得A1; A1BC與A1CD的平分線相交于點A2,得A2;……; A7BC與A7CD的平分線相交于點A8,得A8,則A8的度數(shù)為()
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,原有一大長方形,被分割成3個正方形和2個長方形后仍是中心對稱圖形.若原來該大長方形的周長是120,則分割后不用測量就能知道周長的圖形標號為( )
A.①②
B.②③
C.①③
D.①②③
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】用兩種方法證明“三角形的外角和等于360°”.
已知:如圖,∠BAE,∠CBF,∠ACD是△ABC的三個外角.
求證:∠BAE+∠CBF+∠ACD=360°.
證法1:∵________________________________________________________________,
∴∠BAE+∠1+∠CBF+∠2+∠ACD+∠3=180°×3=540°,
∴∠BAE+∠CBF+∠ACD=540°-(∠1+∠2+∠3).
∵______________,
∴∠BAE+∠CBF+∠ACD=540°-180°=360°.
請把證法1補充完整,并用不同的方法完成證法2.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,拋物線y= (x﹣m)2﹣ m2+m的頂點為A,與y軸的交點為B,連結AB,AC⊥AB,交y軸于點C,延長CA到點D,使AD=AC,連結BD.作AE∥x軸,DE∥y軸.
(1)當m=2時,求點B的坐標;
(2)求DE的長?
(3)①設點D的坐標為(x,y),求y關于x的函數(shù)關系式?②過點D作AB的平行線,與第(3)①題確定的函數(shù)圖象的另一個交點為P,當m為何值時,以A,B,D,P為頂點的四邊形是平行四邊形?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形ABCD的邊長為a,動點P從點A出發(fā),沿折線A→B→D→C→A的路徑運動,回到點A時運動停止.設點P運動的路程長為x,AP長為y,則y關于x的函數(shù)圖象大致是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖①,O為坐標原點,點B在x軸的正半軸上,四邊形OACB是平行四邊形,sin∠AOB= ,反比例函數(shù)y= (k>0)在第一象限內的圖象經(jīng)過點A,與BC交于點F.
(1)若OA=10,求反比例函數(shù)解析式;
(2)若點F為BC的中點,且△AOF的面積S=12,求OA的長和點C的坐標;
(3)在(2)中的條件下,過點F作EF∥OB,交OA于點E(如圖②),點P為直線EF上的一個動點,連接PA,PO.是否存在這樣的點P,使以P、O、A為頂點的三角形是直角三角形?若存在,請直接寫出所有點P的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】
(1)先求解下列兩題: ①如圖①,點B,D在射線AM上,點C,E在射線AN上,且AB=BC=CD=DE,已知∠EDM=84°,求∠A的度數(shù);
②如圖②,在直角坐標系中,點A在y軸正半軸上,AC∥x軸,點B,C的橫坐標都是3,且BC=2,點D在AC上,且橫坐標為1,若反比例函數(shù) 的圖象經(jīng)過點B,D,求k的值.
(2)解題后,你發(fā)現(xiàn)以上兩小題有什么共同點?請簡單地寫出.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com