【題目】如圖,RtABC中,∠B=90°,AB=6,BC=9,將ABC折疊,使點(diǎn)CAB的中點(diǎn)D重合,折痕交AC于點(diǎn)M,交BC于點(diǎn)N.

(1)求線段BN的長(zhǎng);

(2)連接CD,與MN交于點(diǎn)E,寫出與點(diǎn)E相關(guān)的兩個(gè)正確結(jié)論:①   ;

   

【答案】(1)4;(2)DE=EC,DEM=90°.

【解析】

先求得BD的長(zhǎng),設(shè)BF=x,由翻折的性質(zhì)可知:DF=9-x.接下來,在RtBDF中,由勾股定理可列出關(guān)于x的方程求解即可.

解:(1)DAB的中點(diǎn),

BD=AB=3.

設(shè)BF=x,則CF=9﹣x.

由翻折的性質(zhì)可知:DF=CF=9﹣x.

BDF中,由勾股定理得:DF2=BD2+FB2,即(9﹣x)2=32+x2

解得:x=4.

BF的長(zhǎng)為4.

(2)如圖:結(jié)論:①DE=EC;②∠DEM=90°,

故答案為DE=EC,DEM=90°

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在手工制作課上,老師組織七年級(jí)(2)班的學(xué)生用硬紙制作圓柱形茶葉筒.七年級(jí)(2)班共有學(xué)生44人,其中男生人數(shù)比女生人數(shù)少2人,并且每名學(xué)生每小時(shí)剪筒身50個(gè)或剪筒底120個(gè).

1)七年級(jí)(2)班有男生、女生各多少人?

2)要求一個(gè)筒身配兩個(gè)筒底,為了使每小時(shí)剪出的筒身與筒底剛好配套,應(yīng)該分配多少名學(xué)生剪筒身,多少名學(xué)生剪筒底?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中, A=80, ABCACD的平分線交于點(diǎn)A1,得A1; A1BCA1CD的平分線相交于點(diǎn)A2,得A2;……; A7BCA7CD的平分線相交于點(diǎn)A8,得A8,則A8的度數(shù)為()

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,原有一大長(zhǎng)方形,被分割成3個(gè)正方形和2個(gè)長(zhǎng)方形后仍是中心對(duì)稱圖形.若原來該大長(zhǎng)方形的周長(zhǎng)是120,則分割后不用測(cè)量就能知道周長(zhǎng)的圖形標(biāo)號(hào)為( )

A.①②
B.②③
C.①③
D.①②③

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】用兩種方法證明三角形的外角和等于360°”.

已知:如圖,BAE,CBFACDABC的三個(gè)外角.

求證:∠BAECBFACD=360°.

證法1:________________________________________________________________,

∴∠BAE1+CBF2+ACD3=180°×3=540°,

∴∠BAECBFACD=540°-(1+2+3).

______________,

∴∠BAECBFACD=540°-180°=360°.

請(qǐng)把證法1補(bǔ)充完整,并用不同的方法完成證法2.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,拋物線y= (x﹣m)2 m2+m的頂點(diǎn)為A,與y軸的交點(diǎn)為B,連結(jié)AB,AC⊥AB,交y軸于點(diǎn)C,延長(zhǎng)CA到點(diǎn)D,使AD=AC,連結(jié)BD.作AE∥x軸,DE∥y軸.

(1)當(dāng)m=2時(shí),求點(diǎn)B的坐標(biāo);
(2)求DE的長(zhǎng)?
(3)①設(shè)點(diǎn)D的坐標(biāo)為(x,y),求y關(guān)于x的函數(shù)關(guān)系式?②過點(diǎn)D作AB的平行線,與第(3)①題確定的函數(shù)圖象的另一個(gè)交點(diǎn)為P,當(dāng)m為何值時(shí),以A,B,D,P為頂點(diǎn)的四邊形是平行四邊形?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD的邊長(zhǎng)為a,動(dòng)點(diǎn)P從點(diǎn)A出發(fā),沿折線A→B→D→C→A的路徑運(yùn)動(dòng),回到點(diǎn)A時(shí)運(yùn)動(dòng)停止.設(shè)點(diǎn)P運(yùn)動(dòng)的路程長(zhǎng)為x,AP長(zhǎng)為y,則y關(guān)于x的函數(shù)圖象大致是( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①,O為坐標(biāo)原點(diǎn),點(diǎn)B在x軸的正半軸上,四邊形OACB是平行四邊形,sin∠AOB= ,反比例函數(shù)y= (k>0)在第一象限內(nèi)的圖象經(jīng)過點(diǎn)A,與BC交于點(diǎn)F.

(1)若OA=10,求反比例函數(shù)解析式;
(2)若點(diǎn)F為BC的中點(diǎn),且△AOF的面積S=12,求OA的長(zhǎng)和點(diǎn)C的坐標(biāo);
(3)在(2)中的條件下,過點(diǎn)F作EF∥OB,交OA于點(diǎn)E(如圖②),點(diǎn)P為直線EF上的一個(gè)動(dòng)點(diǎn),連接PA,PO.是否存在這樣的點(diǎn)P,使以P、O、A為頂點(diǎn)的三角形是直角三角形?若存在,請(qǐng)直接寫出所有點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】
(1)先求解下列兩題: ①如圖①,點(diǎn)B,D在射線AM上,點(diǎn)C,E在射線AN上,且AB=BC=CD=DE,已知∠EDM=84°,求∠A的度數(shù);
②如圖②,在直角坐標(biāo)系中,點(diǎn)A在y軸正半軸上,AC∥x軸,點(diǎn)B,C的橫坐標(biāo)都是3,且BC=2,點(diǎn)D在AC上,且橫坐標(biāo)為1,若反比例函數(shù) 的圖象經(jīng)過點(diǎn)B,D,求k的值.
(2)解題后,你發(fā)現(xiàn)以上兩小題有什么共同點(diǎn)?請(qǐng)簡(jiǎn)單地寫出.

查看答案和解析>>

同步練習(xí)冊(cè)答案