二次函數(shù)y=mx2-(m2-3m)x+1-m的圖象關(guān)于y軸對(duì)稱(chēng),則m的值( )
A.m=0
B.m=3
C.m=1
D.m=0或3
【答案】分析:由于函數(shù)圖象關(guān)于y軸對(duì)稱(chēng),則函數(shù)的解析式形式應(yīng)該是y=ax2+k型,由此求得問(wèn)題的答案.
解答:解:∵函數(shù)圖象關(guān)于y軸對(duì)稱(chēng),
∴函數(shù)的解析式形式應(yīng)該是y=ax2+k型,
∴-(m2-3m)=0,
解得:m=0或m=3,
∵二次函數(shù)的二次系數(shù)不能為0,
∴m=3.
故選B.
點(diǎn)評(píng):當(dāng)a相同時(shí),二次函數(shù)不同的表達(dá)形式,其圖象形狀相同,在平面直角坐標(biāo)系中的位置不同,應(yīng)結(jié)合圖象,熟記各類(lèi)表達(dá)形式的性質(zhì).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

14、關(guān)于x的方程mx2+mx+5=m有兩個(gè)相等的實(shí)數(shù)根,則相應(yīng)二次函數(shù)y=mx2+mx+5-m與x軸必然相交于
點(diǎn),此時(shí)m=
4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知,二次函數(shù)y=mx2+3(m-
14
)x+4(m<0)與x軸交于A、B兩點(diǎn),(A在B的左邊),與y軸交于點(diǎn)C,且∠ACB=90度.
(1)求這個(gè)二次函數(shù)的解析式;
(2)矩形DEFG的一條邊DG在AB上,E、F分別在BC、AC上,設(shè)OD=x,矩形DEFG的面積為S,求S關(guān)于x的函數(shù)解析式;
(3)將(1)中所得拋物線向左平移2個(gè)單位后,與x軸交于A′、B′兩點(diǎn)(A′在B′的左邊),矩形D′E′F′G′的一條邊D′G′在A′B′上(G′在D′的左邊),E′、F′分別在拋物線上,矩形D′E′F′G′的周長(zhǎng)是否存在最大值?若存在,請(qǐng)求出最大值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知二次函數(shù)y=mx2-7x-7的圖象和x軸有交點(diǎn),則m的取值范圍是( 。
A、m>-
7
4
B、m>-
7
4
且m≠0
C、m≥-
7
4
D、m≥-
7
4
且m≠0

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•順義區(qū)一模)已知關(guān)于x的方程mx2-(3m+2)x+2m+2=0
(1)求證:無(wú)論m取任何實(shí)數(shù)時(shí),方程恒有實(shí)數(shù)根.
(2)若關(guān)于x的二次函數(shù)y=mx2-(3m+2)x+2m+2的圖象與x軸兩個(gè)交點(diǎn)的橫坐標(biāo)均為正整數(shù),且m為整數(shù),求拋物線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

若二次函數(shù)y=mx2+x+m(m-2)的圖象經(jīng)過(guò)原點(diǎn),則m的值為
2
2

查看答案和解析>>

同步練習(xí)冊(cè)答案