【題目】等腰三角形的一邊長為7cm,另一邊長為3cm,那么這個等腰三角形的周長為________cm.

【答案】17

【解析】解:分兩種情況:

當腰為3時,3+37,所以不能構(gòu)成三角形;

當腰為7時,3+77,所以能構(gòu)成三角形,周長是:3+7+7=17

故答案為:17

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】已知△ABC為等邊三角形,點D為直線BC上一動點(點D不與點B,點C重合)。以AD為邊作等邊三角形ADE,連接CE。

(1)如圖(1),當點D在邊BC上時。

①求證:△ABD≌△ACE;

②直接判斷結(jié)論BC=DC+CE是否成立(不需證明);

(2)如圖2,當點D在邊BC的延長線上時,其他條件不變,請寫出BC,DCCE之間存在的數(shù)量關(guān)系,并寫出證明過程。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】分解因式:2x38x_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小聰是一名非常愛鉆研的七年級學生,他將4塊完全一樣的三角板(如圖1)拼成了一個非常工整的圖形(如圖2),請教老師以后得知:該圖形是一個正方形,并且里面的四邊形也是一個正方形.為了作進一步的探究,小明將三角板的三邊長用為a,b,c表示(如圖3),將兩個正方形分別用正方形ABCD和正方形EFGH表示,然后他用兩種不同的方法計算了正方形ABCD的面積.
(1)請你用兩種不同的方法計算出正方形ABCD面積: 方法一:方法二:
(2)根據(jù)(1)中計算結(jié)果,你能得到怎么樣的結(jié)論?
(3)請用文字語言描述(2)中得到的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】四邊形ABCD中,∠BAD的角平分線與邊BC交于點E,∠ADC的角平分線交AE于點O,且點O在四邊形ABCD的內(nèi)部.
(1)如圖1,若AD∥BC,∠B=70°,∠C=80°,則∠DOE=°.
(2)如圖2,試探索∠B、∠C、∠DOE之間的數(shù)量關(guān)系,并將你的探索過程寫下來

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某中學有一塊四邊形的空地ABCD,如圖所示,學校計劃在空地上種植草皮,經(jīng)測量∠A=90°,AB=3m,BC=12m,CD=13m,DA=4m

1)試判斷△BCD的形狀;

2)若每平方米草皮需要200元,問學校需要投入多少資金買草皮?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某企業(yè)生產(chǎn)的一批產(chǎn)品上市后30天內(nèi)全部售完,調(diào)查發(fā)現(xiàn),國內(nèi)市場的日銷售量為y1(噸)與時間t(t為整數(shù),單位:天)的關(guān)系如圖1所示的拋物線的一部分,而國外市場的日銷售量y2(噸)與時間t,t為整數(shù),單位:天)的關(guān)系如圖2所示.

(1)求y1與時間t的函數(shù)關(guān)系式及自變量t的取值范圍,并寫出y2與t的函數(shù)關(guān)系式及自變量t的取值范圍;

(2)設(shè)國內(nèi)、國外市場的日銷售總量為y噸,直接寫出y與時間t的函數(shù)關(guān)系式,當銷售第幾天時,國內(nèi)、外市場的日銷售總量最早達到75噸?

(3)判斷上市第幾天國內(nèi)、國外市場的日銷售總量y最大,并求出此時的最大值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,矩形ABCD中,E為BC上一點,DFAE于F.

(1)ΔABE與ΔADF相似嗎?請說明理由.

(2)若AB=6,AD=12,BE=8,求FD的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知某水庫容量約為112000立方米,將112000用科學記數(shù)法表示為

查看答案和解析>>

同步練習冊答案