【題目】四邊形ABCD中,∠BAD的角平分線與邊BC交于點(diǎn)E,∠ADC的角平分線交AE于點(diǎn)O,且點(diǎn)O在四邊形ABCD的內(nèi)部.
(1)如圖1,若AD∥BC,∠B=70°,∠C=80°,則∠DOE=°.
(2)如圖2,試探索∠B、∠C、∠DOE之間的數(shù)量關(guān)系,并將你的探索過程寫下來
【答案】
(1)105
(2)解:∵∠DOE=∠OAD+∠ADO,
∵∠BAD的角平分線與邊BC交于點(diǎn)E,∠ADC的角平分線交AE于點(diǎn)O,
∴2∠DOE=∠BAD+∠ADC,
∵∠B+∠C+∠BAD+∠ADC=360°,
∴∠B+∠C+2∠DOE=360°
【解析】解:(1)∵AD∥BC,∠B=70°,∠C=80°, ∴∠BAD=110°,∠ADC=100°,
∵∠BAD的角平分線與邊BC交于點(diǎn)E,∠ADC的角平分線交AE于點(diǎn)O,
∴∠BAE=55°,∠ODC=50°,
∴∠AEC=125°,
∴∠DOE=360°﹣125°﹣80°﹣50°=105°;
所以答案是:105.
【考點(diǎn)精析】認(rèn)真審題,首先需要了解平行線的性質(zhì)(兩直線平行,同位角相等;兩直線平行,內(nèi)錯角相等;兩直線平行,同旁內(nèi)角互補(bǔ)),還要掌握多邊形內(nèi)角與外角(多邊形的內(nèi)角和定理:n邊形的內(nèi)角和等于(n-2)180°.多邊形的外角和定理:任意多邊形的外角和等于360°)的相關(guān)知識才是答題的關(guān)鍵.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】數(shù)學(xué)課上,我們知道可以用圖形的面積來解釋一些代數(shù)恒等式,如圖1可以解釋完全平方公式(a+b)2=a2+2ab+b2 .
(1)如圖2,請用不同的代數(shù)式表示圖中陰影部分的面積,由此,你能得到怎樣的等式?
(2)請說明這個等式成立;
(3)已知(2m+n)2=13,(2m﹣n)2=5,請利用上述等式求mn.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC為等邊三角形,D為BC延長線上的一點(diǎn),CE平分∠ACD,CE=BD,求證:△ADE為等邊三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(a,﹣6)關(guān)于 x 軸對稱的點(diǎn)的坐標(biāo)為( )
A. (﹣a,6) B. (a,6) C. (a,﹣6) D. (﹣a,﹣6)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若一個多邊形的內(nèi)角和等于720°,則這個多邊形的邊數(shù)是 ( ).
A. 5 B. 6 C. 7 D. 8
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com