【題目】如圖,將Rt△ABC沿斜邊翻折得到△ADC,點(diǎn)E,F(xiàn)分別為DC,BC邊上的點(diǎn),且∠EAF=∠DAB.試猜想DE,BF,EF之間有何數(shù)量關(guān)系,并證明你的猜想.
【答案】DE+BF=EF,見解析
【解析】
試題分析:通過延長(zhǎng)CF,將DE和BF放在一起,便于尋找等量關(guān)系,通過兩次三角形全等證明,得出結(jié)論.
猜想:DE+BF=EF.證明:延長(zhǎng)CF,作∠4=∠1,如圖:
∵將Rt△ABC沿斜邊翻折得到△ADC,點(diǎn)E,F(xiàn)分別為DC,BC邊上的點(diǎn),且∠EAF=∠DAB,
∴∠1+∠2=∠3+∠5,∠2+∠3=∠1+∠5,
∵∠4=∠1,
∴∠2+∠3=∠4+∠5,
∴∠GAF=∠FAE,
在△AGB和△AED中,,
∴△AGB≌△AED(ASA),
∴AG=AE,BG=DE,
在△AGF和△AEF中,,
∴△AGF≌△AEF(SAS),
∴GF=EF,
∴DE+BF=EF.
證畢.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中, 若∠A :∠B :∠C = 1 : 2 : 3 , 則△ABC 是( )
A. 銳角三角形. B. 直角三角形 C. 鈍角三角形 D. 等腰三角形
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】兩條直線被第三條直線所截,那么內(nèi)錯(cuò)角之間的大小關(guān)系是( ).
A. 相等 B. 互補(bǔ) C. 不相等 D. 無(wú)法確定
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法正確的是( 。
A. 兩個(gè)等邊三角形一定全等 B. 形狀相同的兩個(gè)三角形全等
C. 面積相等的兩個(gè)三角形全等 D. 全等三角形的面積一定相等
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列命題:①關(guān)于某條直線成軸對(duì)稱的兩個(gè)圖形是全等圖形;
②有一個(gè)外角為60°的等腰三角形是等邊三角形;
③關(guān)于某直線對(duì)稱的兩條線段平行;
④正五邊形有五條對(duì)稱軸;
⑤在直角三角形中,30°角所對(duì)的邊等于斜邊的一半. 其中正確的有( )個(gè).
A.1個(gè) B.2個(gè) C.3個(gè) D.4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在ABCD中,E,F(xiàn)分別為邊AB,CD的中點(diǎn),連接DE、BF、BD.
(1)求證:△ADE≌△CBF.
(2)若AD⊥BD,則四邊形BFDE是什么特殊四邊形?請(qǐng)證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商店銷售甲、乙兩種商品,現(xiàn)有如下信息:
請(qǐng)結(jié)合以上信息,解答下列問題:
(1)求甲、乙兩種商品的進(jìn)貨單價(jià);
(2)已知甲、乙兩種商品的零售單價(jià)分別為2元、3元,該商店平均每天賣出甲商品500件和乙商品1300件,經(jīng)市場(chǎng)調(diào)查發(fā)現(xiàn),甲種商品零售單價(jià)每降0.1元,甲種商品每天可多銷售100件,商店決定把甲種商品的零售單價(jià)下降m(m>0)元,在不考慮其他因素的條件下,求當(dāng)m為何值時(shí),商店每天銷售甲、乙兩種商品獲取的總利潤(rùn)為1800元(注:?jiǎn)渭麧?rùn)=零售單價(jià)﹣進(jìn)貨單價(jià))
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com