【題目】如圖,已知ΔABC是邊長為1的等腰直角三角形,以RtΔABC的斜邊AC為直角邊,畫第二個(gè)等腰RtΔACD,再以RtΔACD的斜邊AD為直角邊,畫第三個(gè)等腰RtΔADE,……
如此類推.(直接寫出結(jié)果)
(1)AC的長 、AE的長 ;
(2)第n個(gè)等腰直角三角形的斜邊長 .
【答案】(1);;(2)()n.
【解析】
(1)根據(jù)勾股定理即可得出第1個(gè)等腰直角三角形的斜邊長、第2個(gè)等腰直角三角形的斜邊長、第3個(gè)等腰直角三角形的斜邊長.
(2)依次、反復(fù)運(yùn)用勾股定理計(jì)算,根據(jù)計(jì)算結(jié)果即可得到第n個(gè)等腰直角三角形的斜邊長.
解:(1)根據(jù)勾股定理,第1個(gè)等腰直角三角形的斜邊長是:
AC=,
第2個(gè)等腰直角三角形的斜邊長是:AD=,
第3個(gè)等腰直角三角形的斜邊長是:AE=.
故答案為:;;
(2)第n個(gè)等腰直角三角形的斜邊長是:AN=()n.
故答案為:()n.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】北京第一條地鐵線路于1971年1月15日正式開通運(yùn)營.截至2017年1月,北京地鐵共有19條運(yùn)營線路,覆蓋北京市11個(gè)轄區(qū).據(jù)統(tǒng)計(jì),2017 年地鐵每小時(shí)客運(yùn)量是2002年地鐵每小時(shí)客運(yùn)量的4倍,2017年客運(yùn)240萬人所用的時(shí)間比2002年客運(yùn)240萬人所用的時(shí)間少30小時(shí),求2017年地鐵每小時(shí)的客運(yùn)量?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點(diǎn)E在△ABC的邊AB上,∠C=90°,∠BAC的平分線交BC于點(diǎn)D,且D在以AE為直徑的⊙O上.
(1)求證:BC是⊙O的切線;
(2)已知∠B=30°,CD=4,求線段AB的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的方程x2-(k+2)x+2k=0.
(1)求證:k取任何實(shí)數(shù)值,方程總有實(shí)數(shù)根;
(2)若此方程的一個(gè)根是1,請求出方程的另一個(gè)根,并求以此兩根為邊長的直角三角形的周長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC中,∠B=90°,AB=8,CB=6,P、Q是△ABC邊上的兩個(gè)動(dòng)點(diǎn),其中點(diǎn)P從點(diǎn)A開始沿A→B方向運(yùn)動(dòng),且速度為每秒1cm,點(diǎn)Q從點(diǎn)B開始沿B→C方向運(yùn)動(dòng),且速度為每秒2cm,它們同時(shí)出發(fā),設(shè)出發(fā)的時(shí)間為t秒.
(1)當(dāng)t=2秒時(shí),求PQ的長;
(2)求出發(fā)時(shí)間為幾秒時(shí),△PQB是等腰三角形?
(3)若Q沿B→C→A方向運(yùn)動(dòng),則當(dāng)點(diǎn)Q在邊CA上運(yùn)動(dòng)時(shí),求能使△BCQ成為等腰三角形的運(yùn)動(dòng)時(shí)間。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,BP是△ABC中∠ABC的平分線,CP是∠ACB的外角的平分線,如果∠ABP=20°,∠ACP=50°,則∠A+∠P=( )
A.70°B.80°C.90°D.100°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD的一邊BC與⊙O相切于G,DC=6,且對角線BD經(jīng)過圓心O,AD交⊙O于點(diǎn)E,連接BE,BE恰好是⊙O的切線,已知點(diǎn)P在對角線BD上運(yùn)動(dòng),若以B、P、G三點(diǎn)構(gòu)成的三角形與△BED相似,則BP=______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠AOB=90°,C在OB的延長線上,D為⊙O上一點(diǎn),∠BAD=∠BDC.
(1)求證:CD是⊙O的切線;
(2)若⊙O的半徑為1,且OB=BC,求四邊形AOBD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知AB∥CD,點(diǎn)E為平面內(nèi)一點(diǎn),BE⊥CE于E.
(1)如圖1,請直接寫出∠ABE和∠DCE之間的數(shù)量關(guān)系;
(2)如圖2,過點(diǎn)E作EF⊥CD,垂足為F,求證:∠CEF=∠ABE;
(3)如圖3,在(2)的條件下,作EG平分∠CEF,交DF于點(diǎn)G,作ED平分∠BEF,交CD于D,連接BD,若∠DBE+∠ABD=180°,且∠BDE=3∠GEF,求∠BEG的度數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com