Processing math: 100%
14.下列各組數(shù)能構成勾股數(shù)的是(  )
A.2,37B.12,16,20C.13,1415D.32,42,52

分析 欲判斷是否為勾股數(shù),必須根據(jù)勾股數(shù)是正整數(shù),同時還需驗證兩小邊的平方和是否等于最長邊的平方.

解答 解:A、22+(32=(72,但不是正整數(shù),故選項錯誤;
B、122+162=202,能構成直角三角形,是整數(shù),故選項正確;
C、(142+(152≠(132,不能構成直角三角形,故選項錯誤;
D、(322+(422≠(522,不能構成直角三角形,故選項錯誤.
故選B.

點評 此題主要考查了勾股數(shù),關鍵是掌握勾股數(shù)的定義,及勾股定理的逆定理:已知△ABC的三邊滿足a2+b2=c2,則△ABC是直角三角形.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:填空題

4.如圖,在矩形ABCD中,AB=3,AD=4,以對角線的一半為邊依次作平行四邊形,則SO1B1B2C1=32

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

5.求解下列一元一次方程
(1)-3(x+3)+6(x-1)=24;         
(2)0.1x0.20.3=1-1+2x2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

2.如圖,在平面直角坐標系中,等邊△OAB的頂點O為坐標原點,B點坐標為(4,0),且△OAB的面積為43.點P從A點出發(fā)沿著射線AB運動,點Q從B點出發(fā)沿X軸正半軸運動,點P、點Q同時出發(fā),速度均為每秒2個單位長度,運動時間為x秒,過點P作PH⊥X軸于點H,設HQ的長度為y個單位長度.
(1)求A點的坐標;
(2)當點P在線段AB上運動時,取BQ的中點M,求HM的長度;
(3)在點P、點Q的運動過程中,當∠PQB=30°時,求點P、點Q運動時間x的值,并直接寫出此時H點的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:選擇題

9.下列幾何體:①球;②長方體;③圓柱;④圓錐;⑤正方體,用一個平面去截上面的幾何體,其中能截出圓的幾何體有(  )
A.4個B.3個C.2個D.1個

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

19.如圖,點P在射線AB的上方,且∠PAB=45°,PA=2,點M是射線AB上的動點(點M不與點A重合),現(xiàn)將點P繞點A按順時針方向旋轉60°,到點Q,將點M繞點P按逆時針方向旋轉60°到點N,連結AQ,PM,PN,作直線QN.
(1)求證:AM=QN;
(2)直線QN與以點P為圓心,以PN的長為半徑的圓是否存在相切的情況?若存在,請求出此時AM的長,若不存在,請說明理由;
(3)當以點P為圓心,以PN的長為半徑的圓經(jīng)過點Q時,直接寫出劣弧NQ與兩條半徑所圍成的扇形的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:填空題

6.二次函數(shù)y=x2+(2m+1)x+(m2-1)有最小值-2,則m=34

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

3.如圖,P為正方形ABCD的AD邊上一點,PE⊥AD交BD于點E點,將△PCD繞C點逆時針方向旋轉90°到△FCB的位置,連接PF交BD于Q點.
①求證:BQ=EQ;
②探究線段PQ與線段CQ的關系,并證明你的結論.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

11.已知|a|=4,|b|=2,且|a+b|=|a|+|b|,求a-b的值.

查看答案和解析>>

同步練習冊答案
闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁炬儳缍婇弻锝夊箣閿濆憛鎾绘煕閵堝懎顏柡灞诲€濆畷顐﹀Ψ閿旇姤鐦庡┑鐐差嚟婵敻鎳濇ィ鍐ㄧ厴闁瑰鍋涚粻鐘绘⒑缁嬪尅鏀绘い銊ユ楠炲牓濡歌閸嬫捇妫冨☉娆忔殘閻庤娲栧鍫曞箞閵娿儺娓婚悹鍥紦婢规洟姊绘担铏瑰笡濞撴碍顨婂畷鏉库槈濮樺彉绗夊┑鐐村灦鑿ゆ俊鎻掔墛缁绘盯宕卞Ο鍝勵潔濡炪倕绻掗崰鏍ь潖缂佹ɑ濯撮柤鎭掑劤閵嗗﹪姊洪棃鈺冪Ф缂佺姵鎹囬悰顔跨疀濞戞瑦娅㈤梺璺ㄥ櫐閹凤拷 闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁炬儳缍婇弻鐔兼⒒鐎靛壊妲紒鐐劤缂嶅﹪寮婚悢鍏尖拻閻庨潧澹婂Σ顔剧磼閻愵剙鍔ょ紓宥咃躬瀵鎮㈤崗灏栨嫽闁诲酣娼ф竟濠偽i鍓х<闁绘劦鍓欑粈鍐┿亜閺囧棗娲ら悡姗€鏌熸潏楣冩闁稿鍔欓弻娑樷枎韫囷絾效闂佽鍠楅悷褏妲愰幘瀛樺闁告繂瀚烽埀顒€鐭傞弻娑㈠Ω閵壯冪厽閻庢鍠栭…閿嬩繆閹间礁鐓涢柛灞剧煯缁ㄤ粙姊绘担鍛靛綊寮甸鍌滅煓闁硅揪瀵岄弫鍌炴煥閻曞倹瀚�