【題目】如圖,將菱形紙片ABCD折疊,使點(diǎn)A恰好落在菱形的對(duì)稱(chēng)中心O處,折痕為EF,若菱形ABCD的邊長(zhǎng)為2cm,∠A=120°,則EF=cm.
【答案】
【解析】解:
連接BD、AC,
∵四邊形ABCD是菱形,
∴AC⊥BD,AC平分∠BAD,
∵∠BAD=120°,
∴∠BAC=60°,
∴∠ABO=90°﹣60°=30°,
∵∠AOB=90°,
∴AO= AB= ×2=1,
由勾股定理得:BO=DO= ,
∵A沿EF折疊與O重合,
∴EF⊥AC,EF平分AO,
∵AC⊥BD,
∴EF∥BD,
∴EF為△ABD的中位線,
∴EF= BD= ( + )= ,
故答案為: .
根據(jù)菱形性質(zhì)得出AC⊥BD,AC平分∠BAD,求出∠ABO=30°,求出AO,BO、DO,根據(jù)折疊得出EF⊥AC,EF平分AO,推出EF∥BD,推出,EF為△ABD的中位線,根據(jù)三角形中位線定理求出即可.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,AC= ,BC=3,△DEF是邊長(zhǎng)為a(a為小于3的常數(shù))的等邊三角形,將△DEF沿AC方向平移,使點(diǎn)D在線段AC上,DE∥AB,設(shè)△DEF與△ABC重疊部分的周長(zhǎng)為T(mén).
(1)求證:點(diǎn)E到AC的距離為一個(gè)常數(shù);
(2)若AD= ,當(dāng)a=2時(shí),求T的值;
(3)若點(diǎn)D運(yùn)動(dòng)到AC的中點(diǎn)處,請(qǐng)用含a的代數(shù)式表示T.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小麗駕車(chē)從甲地到乙地.設(shè)她出發(fā)第xmin時(shí)的速度為ykm/h,圖中的折線表示她在整個(gè)駕車(chē)過(guò)程中y與x之間的函數(shù)關(guān)系.
(1)小麗駕車(chē)的最高速度是km/h;
(2)當(dāng)20≤x≤30時(shí),求y與x之間的函數(shù)關(guān)系式,并求出小麗出發(fā)第22min時(shí)的速度;
(3)如果汽車(chē)每行駛100km耗油10L,那么小麗駕車(chē)從甲地到乙地共耗油多少升?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在矩形ABCD中,將點(diǎn)A翻折到對(duì)角線BD上的點(diǎn)M處,折痕BE交AD于點(diǎn)E.將點(diǎn)C翻折到對(duì)角線BD上的點(diǎn)N處,折痕DF交BC于點(diǎn)F.
(1)求證:四邊形BFDE為平行四邊形;
(2)若四邊形BFDE為菱形,且AB=2,求BC的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】若關(guān)x的函數(shù)y=kx2+2x-1的圖像與x軸僅有一個(gè)交點(diǎn),則實(shí)數(shù)k的值為。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)y=x2+2(m+l)x﹣m+1.以下四個(gè)結(jié)論:
①不論m取何值,圖象始終過(guò)點(diǎn)( ,2 );
②當(dāng)﹣3<m<0時(shí),拋物線與x軸沒(méi)有交點(diǎn):
③當(dāng)x>﹣m﹣2時(shí),y隨x的增大而增大;
④當(dāng)m=﹣ 時(shí),拋物線的頂點(diǎn)達(dá)到最高位置.
請(qǐng)你分別判斷四個(gè)結(jié)論的真假,并給出理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com