【題目】甲、乙兩家綠化養(yǎng)護(hù)公司各自推出了校園綠化養(yǎng)護(hù)服務(wù)的收費(fèi)方案.

甲公司方案:每月的養(yǎng)護(hù)費(fèi)用y(元)與綠化面積x(平方米)的關(guān)系如圖所示.

乙公司方案:綠化面積不超過1000平方米時,每月收取費(fèi)用5500元;綠化面積超過1000平方米時,超過的部分每月每平方米加收4元.

(1)求如圖所示的yx的函數(shù)表達(dá)式;

(2)如果某學(xué)校目前的綠化面積是1200平方米.那么選擇哪家公司的服務(wù)比較劃算.

【答案】(1)y=5x+400(2)選擇乙公司的服務(wù)比較劃算

【解析】整體分析

(1)根據(jù)圖形得到直線上的兩個點(diǎn)的坐標(biāo),用待定系數(shù)法求一次函數(shù)的解析式;(2)分別求出兩家公司的費(fèi)用作比較.

:(1)設(shè)yx的關(guān)系式為y=kx+b(k≠0),

依題意得

解得k=5,b=400,

yx的關(guān)系式為y=5x+400

(2)x=1200時,

甲公司方案為51200+400=6400;

乙公司方案為5500+(1200-1000)4=6300.

∵6400>6300,

∴選擇乙公司的服務(wù)比較劃算.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:點(diǎn)O到△ABC的兩邊AB,AC所在直線的距離相等,且OBOC

(1)如圖1,若點(diǎn)O在邊BC上,求證:ABAC;

(2)如圖2,若點(diǎn)O在△ABC的內(nèi)部,求證:ABAC;

(3)若點(diǎn)O在△ABC的外部,ABAC成立嗎?請畫出圖表示.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖正方形ABCD的邊長為4,E、F分別為DC、BC中點(diǎn).

(1)求證:△ADE≌△ABF.

(2)求△AEF的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】感知:如圖①,C=ABD=E=90°,可知△ACB∽△BED.(不要求證明)

拓展:如圖②C=ABD=E.求證:△ACB∽△BED.

應(yīng)用:如圖③,C=ABD=E=60°,AC=4,BC=1,則△ABD與△BDE的面積比為

   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在數(shù)軸上點(diǎn)A表示數(shù)20,點(diǎn)C表示數(shù)30,我們把數(shù)軸上兩點(diǎn)之間的距離用表示兩點(diǎn)的大寫字母一起標(biāo)記.

比如,點(diǎn)A與點(diǎn)B之間的距離記作AB,點(diǎn)B與點(diǎn)C之間的距離記作BC…

(1)點(diǎn)A與點(diǎn)C之間的距離記作AC,則AC的長為________;若數(shù)軸上有一點(diǎn)D滿足CD=AD,則D點(diǎn)表示的數(shù)為___________;

(2)動點(diǎn)B從數(shù)1對應(yīng)的點(diǎn)開始向右運(yùn)動,速度為每秒1個單位長度,同時點(diǎn)A、C在數(shù)軸上運(yùn)動,點(diǎn)A、C的速度分別為每秒2個單位長度,每秒3個單位長度,運(yùn)動時間為t.

若點(diǎn)A向右運(yùn)動,點(diǎn)C向左運(yùn)動,AB=BC,求t的值;

若點(diǎn)A向左運(yùn)動,點(diǎn)C向右運(yùn)動,2ABm×BC的值不隨時間t的變化而改變,則2ABm×BC的值為_____________(直接寫出答案).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知矩形OABC的頂點(diǎn)B6,8),動點(diǎn)MN同時從O點(diǎn)出發(fā),點(diǎn)M沿射線OA方向以每秒1個單位的速度運(yùn)動,點(diǎn)N沿線段OB方向以每秒0.6個單位的速度運(yùn)動,當(dāng)點(diǎn)N到達(dá)點(diǎn)B時,點(diǎn)M,N同時停止運(yùn)動,連接MN,設(shè)運(yùn)動時間為t(秒).

1)求證△ONM~△OAB;

2)當(dāng)點(diǎn)M是運(yùn)動到點(diǎn)時,若雙曲線的圖象恰好過點(diǎn)N,試求k的值;

3)△MNB與△OAB能否相似?若能試求出所有t的值,若不能請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖在正方形ABCD中,點(diǎn)MBC邊上一點(diǎn),BM=4MC,以M為直角頂點(diǎn)作等腰直角三角形MEF,點(diǎn)E在對角線BD上,點(diǎn)F在正方形外EFBC于點(diǎn)N,連CF,若BE=2,SCMF=3,則MN_____.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD為矩形,將矩形ABCD沿MN折疊,折痕為MN,點(diǎn)B的對應(yīng)點(diǎn)B′落在AD邊上,已知AB6,AD4

(1)若點(diǎn)B′與點(diǎn)D重合,連結(jié)DM,BN,求證:四邊形BMB′N為菱形;

(2)(1)問條件下求出折痕MN的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,AB=AC=,cosC=

(1)動手操作:利用尺規(guī)作以AC為直徑的⊙O,并標(biāo)出⊙O與AB的交點(diǎn)D,與BC的交點(diǎn)E(保留作圖痕跡,不寫作法);

(2)綜合應(yīng)用:在你所作的圖中,

①求證:弧DE=弧CE ;②求點(diǎn)D到BC的距離.

查看答案和解析>>

同步練習(xí)冊答案