【題目】某快遞公司的每位“快遞小哥”日收入與每日的派送量成一次函數(shù)關(guān)系,如圖所示.
(1)求每位“快遞小哥”的日收入y(元)與日派送量x(件)之間的函數(shù)關(guān)系式;
(2)已知某“快遞小哥”的日收入不少于110元,則他至少要派送多少件?
【答案】
(1)解:設(shè)每位“快遞小哥”的日收入y(元)與日派送量x(件)之間的函數(shù)關(guān)系式為y=kx+b,
將(0,70)、(30,100)代入y=kx+b,
,解得: ,
∴每位“快遞小哥”的日收入y(元)與日派送量x(件)之間的函數(shù)關(guān)系式為y=x+70.
(2)解:根據(jù)題意得:x+70≥110,
解得:x≥40.
答:某“快遞小哥”的日收入不少于110元,則他至少要派送40件.
【解析】(1)由圖象知直線過(0,70)、(30,100),把點的坐標代入所設(shè)的一次函數(shù)解析式即可求出;(2)由“不少于110元”可列不等式x+70≥110即可求出.
科目:初中數(shù)學 來源: 題型:
【題目】如圖①所示,正方形ABCD的邊長為6 cm,動點P從點A出發(fā),在正方形的邊上沿A→B→C→D運動,設(shè)運動的時間為t(s),三角形APD的面積為S(cm2),S與t的函數(shù)圖象如圖②所示,請回答下列問題:
(1)點P在AB上運動的時間為________s,在CD上運動的速度為________cm/s,三角形APD的面積S的最大值為________cm2;
(2)求出點P在CD上運動時S與t之間的函數(shù)表達式;
(3)當t為何值時,三角形APD的面積為10 cm2?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC三個頂點的坐標分別為A(2,4),B(1,1),C(4,3).
①請畫出△ABC關(guān)于x軸對稱的△A1B1C1 , 并寫出點A1的坐標;
②請畫出△ABC繞點B逆時針旋轉(zhuǎn)90°后的△A2BC2 , 并寫出點A2、C2的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△BAC中,∠B和∠C的平分線相交于點F,過點F作DE∥BC交AB于點D,交AC于點E,若BD=5,CE=4,則線段DE的長為( 。
A. 9 B. 6 C. 5 D. 4
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在△ABC中,AB=AC,點D是直線BC上一點(不與B、C重合),以AD為一邊在AD的右側(cè)作△ADE,使AD=AE,∠DAE=∠BAC,連接CE.
(1)如圖一,若△ABC是等邊三角形,且AB=AC=2,點D在線段BC上,
①求證:∠BCE+∠BAC=180°;
②當四邊形ADCE的周長取最小值時,求BD的長.
(2)若∠BAC60° ,當點D在射線BC上移動,則∠BCE和∠BAC 之間有怎樣的數(shù)量關(guān)系?并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】用正方形硬紙板做三棱柱盒子,每個盒子由3個矩形側(cè)面和2個正三角形底面組成,硬紙板以如圖兩種方法裁剪(裁剪后邊角料不再利用)
A方法:剪6個側(cè)面;
B方法:剪4個側(cè)面和5個底面.
現(xiàn)有38張硬紙板,裁剪時x張用A方法,其余用B方法.
(1)用x的代數(shù)式分別表示裁剪出的側(cè)面和底面的個數(shù);
(2)若裁剪出的側(cè)面和底面恰好全部用完,則能做多少個盒子?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】甲、乙兩人從A地出發(fā),騎自行車在同一條路上行駛到B地,他們離出發(fā)地的距離s(千米)和行駛時間t(時)之間的關(guān)系的圖象如圖所示.根據(jù)圖中提供的信息,有下列說法:①他們都行駛了18千米;②甲在中途停留了0.5小時;③乙比甲晚出發(fā)了0.5小時;④甲、乙兩人同時到達目的地;⑤乙追上甲后甲的速度<乙的速度.其中符合圖象描述的說法有( )
A. 2個 B. 3個 C. 4個 D. 5個
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com