【題目】在△ABC中,AB=AC,點(diǎn)D是直線BC上一點(diǎn)(不與B、C重合),以AD為一邊在AD的右側(cè)作△ADE,使AD=AE,∠DAE=∠BAC,連接CE.
(1)如圖一,若△ABC是等邊三角形,且AB=AC=2,點(diǎn)D在線段BC上,
①求證:∠BCE+∠BAC=180°;
②當(dāng)四邊形ADCE的周長(zhǎng)取最小值時(shí),求BD的長(zhǎng).
(2)若∠BAC60° ,當(dāng)點(diǎn)D在射線BC上移動(dòng),則∠BCE和∠BAC 之間有怎樣的數(shù)量關(guān)系?并說明理由.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在△ABC中,∠ACB為銳角,點(diǎn)D為射線BC上一點(diǎn),連接AD,以AD為一邊且在AD的右側(cè)作正方形ADEF.
解答下列問題:
(1)如果AB=AC,∠BAC=90,當(dāng)點(diǎn)D在線段BC上時(shí)(與點(diǎn)B不重合),如圖2,線段CF,BD所在直線位置關(guān)系為 ,數(shù)量關(guān)系為 .
(2)如果AB=AC,∠BAC=90,當(dāng)點(diǎn)D在線段BC的延長(zhǎng)線時(shí),如圖3,(1)中的結(jié)論是否仍然成立,并說明理由。
(3)如果AB=AC,∠BAC是鈍角,點(diǎn)D在線段BC上,當(dāng)∠ABC滿足什么條件時(shí),CF⊥BC(點(diǎn)C、F不重合)畫出圖形,并說明理由。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在□ABCD中,AC交BD于點(diǎn)O,點(diǎn)E、點(diǎn)F分別是OA、OC的中點(diǎn),請(qǐng)判斷線段BE、DF的關(guān)系,并證明你的結(jié)論
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,數(shù)學(xué)興趣小組想測(cè)量電線桿AB的高度,他們發(fā)現(xiàn)電線桿的影子恰好落在土坡的坡面CD和地面BC上,量得CD=4米,BC=10米,CD與地面成30°角,且此時(shí)測(cè)得1米桿的影長(zhǎng)為2米,則電線桿的高度約為米(結(jié)果保留根號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系內(nèi),四邊形OECB的頂點(diǎn)坐標(biāo)分別是:B(2,5),C(8,5),E(10,0),點(diǎn)P(x,0)是線段OE上一點(diǎn),設(shè)四邊形BPEC的面積為S.
(1)過點(diǎn)C作CD⊥x軸于點(diǎn)E,則CD= , 用含x的代數(shù)式表示PE= .
(2)求S與x的函數(shù)關(guān)系.
(3)當(dāng)S=30時(shí),直接寫出線段PE與PB的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,CD⊥AB,EF⊥AB,垂足分別為D、F,∠1=∠2,
(1)試判斷DG與BC的位置關(guān)系,并說明理由.
(2)若∠A=70°,∠BCG=40°,求∠AGD的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】七年級(jí)某班組織班隊(duì)活動(dòng),班委會(huì)準(zhǔn)備買一些獎(jiǎng)品。.班長(zhǎng)王倩拿15元錢去商店全部用來購(gòu)買鋼筆和筆記本兩種獎(jiǎng)品,已知鋼筆2元/支,筆記本1元/本,且每樣?xùn)|西至少買一件。
【1】有多少種購(gòu)買方案?請(qǐng)列舉所有可能的結(jié)果;
【2】從上述方案中任選一種方案購(gòu)買,求買到的鋼筆與筆記本數(shù)量相等的概率。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下面的材料,回答問題:已知(x-2)(6+2x)>0,求x的取值范圍.
解:根據(jù)題意,得或
分別解這兩個(gè)不等式組,得x>2或x<-3.
故當(dāng)x>2或x<-3時(shí),(x-2)(6+2x)>0.
。1)由(x-2)(6+2x)>0,得出不等式組或體現(xiàn)了____思想.
。2)試?yán)蒙鲜龇椒ǎ蟛坏仁剑?/span>x-3)(1-x)<0的解集.
附加題(15分,不計(jì)入總分)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,E點(diǎn)為DF上的點(diǎn),B為AC 上的點(diǎn),∠1=∠2,∠C=∠D
求證: DF∥AC
證明:∵ ∠1=∠2(已知),∠1=∠3 ,∠2=∠4( ),
∴ ∠3=∠4( ),
∴ ∥__________( ).
∴ ∠C=∠ABD( ).
∵ ∠C=∠D( ),
∴ ∠D =__________( ).
∴ DF∥AC( ).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com