【題目】如圖,四邊形的內(nèi)接四邊形,,,連接對角線,,點在線段的延長線上,且,的切線于點.

1)求證:;

2)求證:.

【答案】1)證明見解析;(1)證明見解析.

【解析】

1)連接OC,由圓周角和AB=AC,易證明ABC是正三角形,所以∠BCO=,又CE是切線,CEOC,所以∠BCE=CBA,即可證明CEAB;

(2)因為∠BDC=,所以∠CDF=,又CF=DF,易證△CDF是正三角形,所以∠F=,且BD+CD=BD+DF=BF,根據(jù)圓周角的性質(zhì)易證∠ADC=ABC=F和∠CAB=CBF,又因為△ABC是正三角形,所以AC=BC,所以△ADC≌△BFC,即可得出證明AD=BD+CD

證明:(1)如圖,連接

的內(nèi)接四邊形,,

,

是等邊三角形,

,

的切線,

,

;

2)∵,

,

,

,

、四點共圓,

,,

,

是等邊三角形,

中,

,

,

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形內(nèi)接于⊙,,垂足為

(1),則 °.

(2)求證: ;

(3),,求的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】甲、乙兩人在一條筆直的道路上相向而行甲騎自行車從A地到B,乙駕車從B地到A他們分別以不同的速度勻速行駛,已知甲先出發(fā)6分鐘后,乙才出發(fā),在整個過程中,甲、乙兩人的距離y(千米)與甲出發(fā)的時間x(分)之間的關(guān)系如圖所示當乙到達終點A,甲還需 分鐘到達終點B

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某高校為了解本校學生出行使用共享單車的情況,隨機調(diào)查了某天部分出行學生使用共享單車的情況,并整理成如下統(tǒng)計表.

使用次數(shù)

0

1

2

3

4

5

人數(shù)

11

15

23

28

18

5

1)這天部分出行學生使用共享單車次數(shù)的中位數(shù)是 ,眾數(shù)是

2)這天部分出行學生平均每人使用共享單車約多少次?(結(jié)果保留整數(shù))

3)若該校某天有1500名學生出行,請你估計這天使用共享單車次數(shù)在3次以上(含3次)的學生有多少名.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了解我市某中學書香校園的建設(shè)情況,在該校隨機抽取了50名學生,調(diào)查了解他們一周閱讀課外書籍的時間,并將調(diào)查結(jié)果繪制成如圖所示的頻數(shù)分布直方圖(每小組的時間包含最小值,不包含最大值),根據(jù)圖中信息估計該校1500名學生中,一周課外閱讀時間不少于4小時的人數(shù)約為(

A.300B.600C.900D.1200

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,□ABCDE、FG、H分別在邊ABBC、CDDAAECG,AHCF

(1)求證:△AEH≌△CGF

(2)EG平分∠HEF,求證四邊形EFGH是菱形

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某數(shù)學社團成員想利用所學的知識測量某廣告牌的寬度圖中線段MN的長,直線MN垂直于地面,垂足為點在地面A處測得點M的仰角為、點N的仰角為,在B處測得點M的仰角為米,且A、B、P三點在一直線上請根據(jù)以上數(shù)據(jù)求廣告牌的寬MN的長.

參考數(shù)據(jù):,,,

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知△ABC 中,AB=AC=6cm,∠B=∠C,BC=4cm,點 D AB的中點.

(1)如果點 P 在線段 BC 上以 1cm/s 的速度由點 B 向點 C 運動,同時,點 Q 在線段 CA 上由點 C 向點 A 運動.

若點 Q 的運動速度與點 P 的運動速度相等,經(jīng)過 1 秒后,△BPD △CQP 是否全等,請說明理由;

若點 Q 的運動速度與點 P 的運動速度不相等,當點 Q 的運動速度為多少時,能夠使△BPD △CQP 全等?

(2)若點 Q 以②中的運動速度從點 C 出發(fā),點 P 以原來的運動速度從點 B 同時出發(fā),都逆時針沿△ABC 三邊運動,則經(jīng)過 后,點 P 與點 Q 第一次在△ABC 的 邊上相遇?(在橫線上直接寫出答案,不必書寫解題過程)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】11·湖州)(本小題10分)

如圖,已知EF分別是□ABCD的邊BC、AD上的點,且BE=DF。

求證:四邊形AECF是平行四邊形;

BC=10,∠BAC=90°,且四邊形AECF是菱形,求BE的長。

查看答案和解析>>

同步練習冊答案