【題目】如圖,在等腰直角△ACB中,∠ACB=90°,O是斜邊AB的中點(diǎn),點(diǎn)D、E分別在直角邊ACBC上,且∠DOE=90°,DEOC于點(diǎn)P.有下列結(jié)論:

①∠DEO=45°;

②△AOD≌△COE;

③S四邊形CDOE=SABC;

其中正確的結(jié)論序號(hào)為   .(把你認(rèn)為正確的都寫上)

【答案】①②③④.

【解析】

試題在等腰直角△ACB中,∠ACB=90°,O是斜邊AB的中點(diǎn),

∴∠A=∠B=∠ACO=°,OA=OC=OB,∠AOC=90°=∠DOE,

∴∠AOD=∠COE=90°-∠DOC,

△AOD△COE中,

,

∴△AOD≌△COEASA),

∴OD=OE,

∵∠EOD=90°,

∴∠DEO=45°,

∵△AOD≌△COE,∴SAOD=SCOE,

∴S四邊形CDOE=SCOD+SCOE=SCOD+SAOD=SAOC=SABC,

∵△DOE為等腰直角三角形,

∴∠DEO=45°

∵∠DEO=∠OCE=45°∠COE=∠COE,

∴△OEP∽△OCE

,即OPOC=OE2,

①②③④都正確;

故答案為:①②③④

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB⊥BC,DC⊥BC,EBC上一點(diǎn),使得AE⊥DE;

(1)求證:△ABE∽△ECD;

(2)AB=4,AE=BC=5,求CD的長(zhǎng);

(3)當(dāng)△AED∽△ECD時(shí),請(qǐng)寫出線段AD、AB、CD之間數(shù)量關(guān)系,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知△ABF≌△CDE.

(1)若∠B=30°,∠DCF=40°,求∠EFC的度數(shù);

(2)若BD=10,EF=2,求BF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖是拋物線y=ax2+bx+c(a≠0)的部分圖象,其頂點(diǎn)坐標(biāo)為(1,n),拋物線與x軸的一個(gè)交點(diǎn)在點(diǎn)(3,0)和(4,0)之間.則下列結(jié)論

①a-b+c>0;②3a+b=0;

③b2=4a(c-n);

④一元二次方程ax2+bx+c=n-1有兩個(gè)不相等的實(shí)數(shù)根.

其中正確結(jié)論的個(gè)數(shù)是(  )

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某倉(cāng)庫(kù)調(diào)撥一批物資,調(diào)進(jìn)物資共用8小時(shí),調(diào)進(jìn)物資4小時(shí)后同時(shí)開(kāi)始調(diào)出物資(調(diào)進(jìn)與調(diào)出的速度保持不變).該倉(cāng)庫(kù)庫(kù)存物資W(噸)與時(shí)間t(小時(shí))之間的函數(shù)關(guān)系如圖所示.則這批物資從開(kāi)始調(diào)進(jìn)到全部調(diào)出所需要的時(shí)間是( 。

A. 8.4小時(shí) B. 8.6小時(shí) C. 8.8小時(shí) D. 10小時(shí)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】長(zhǎng)為1,寬為a的矩形紙片(),如圖那樣折一下,剪下一個(gè)邊長(zhǎng)等于矩形寬度的正方形(稱為第一次操作);再把剩下的矩形如圖那樣折一下,剪下一個(gè)邊長(zhǎng)等于此時(shí)矩形寬度的正方形(稱為第二次操作);如此反復(fù)操作下去.若在第n此操作后,剩下的矩形為正方形,則操作終止.當(dāng)n=3時(shí),a的值為_____________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】若等腰三角形一腰上的高與另一腰的夾角是50°,則一個(gè)底角為______________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形中,ADBC,點(diǎn)、分別在、上,,過(guò)點(diǎn)、分別作的垂線,垂足為、

(1)求證:△AGE≌△CHF

(2)連接,線段請(qǐng)交于點(diǎn)M,若CH=4,GH=10,求△AGM的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,D、E分別是ABCABBC上的點(diǎn),AD=2BDBE=CE,若SABC=18,設(shè)ADF的面積為S1,CEF的面積為S2,則S1-S2的值是______.

查看答案和解析>>

同步練習(xí)冊(cè)答案