【題目】如圖,M、N分別是正方形ABCD的邊BC、CD上的點,已知:∠MAN=30°,AM=AN,△AMN的面積為1.
(1)求∠BAM的度數;
(2)求正方形ABCD的邊長.
【答案】(1)∠BAM=30°;(2)正方形ABCD的邊長為.
【解析】
(1)只要證明△ABM≌△ADN(HL),推出∠BAM=∠DAN,由∠MAN=30°,∠BAD=90°,即可推出∠BAM=30°;
(2)作MH⊥AN于H.設BM=x,則AM=AN=2x,MH=x,根據ANMH=1,列出方程即可;
解:(1)∵四邊形ABCD是正方形,
∴AB=AD,∠B=∠D=∠BAD=90°,
∵AM=AN,
在Rt△ABM和Rt△ADN中,
,
∴△ABM≌△ADN(HL),
∴∠BAM=∠DAN,
∵∠MAN=30°,∠BAD=90°,
∴∠BAM=30°.
(2)作MH⊥AN于H.設BM=x,則AM=AN=2x,MH=x,
∵ANMH=1,
∴2xx=1,
解得x=1或﹣1(舍棄),
∴AB=BM=,
∴正方形ABCD的邊長為.
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,直線與x軸交于點A,與雙曲線的一個交點為B(-1,4).
(1)求直線與雙曲線的表達式;
(2)過點B作BC⊥x軸于點C,若點P在雙曲線上,且△PAC的面積為4,求點P的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】小明解方程出現了錯誤,解答過程如下:
方程兩邊都乘以,得(第一步)
去括號,得(第二步)
移項,合并同類項,得(第三步)
解得(第四步)
原方程的解為(第五步)
(1)小明解答過程是從第_____步開始出錯的,這一步正確的解答結果_____,此步的根據是_____.
(2)小明的解答過程缺少_____步驟,此方程的解為_____.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某學校去年在某商場購買甲、乙兩種不同足球,購買甲種足球共花費2400元,購買乙種足球共花費1600元,購買甲種足球數量是購買乙種足球數量的2倍.且購買一個乙種足球比購買一個甲種足球多花20元.
(1)求購買一個甲種足球、一個乙種足球各需多少元;
(2)今年學校為編排“足球操”,決定再次購買甲、乙兩種足球共50個.如果兩種足球的單價沒有改變,而此次購買甲、乙兩種足球的總費用不超過3500元,那么這所學校最少可購買多少個甲種足球?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在數學課上,老師提出如下問題:
尺規(guī)作圖:過直線外一點作已知直線的平行線.
已知:直線l及其外一點A.
求作:l的平行線,使它經過點A.
小云的作法如下:
(1)在直線l上任取一點B;
(2)以B為圓心,BA長為半徑作弧,交直線l于點C;
(3)分別以A、C為圓心,BA長為半徑作弧,兩弧相交于點D;
(4)作直線AD.直線AD即為所求.
小云作圖的依據是_______________________________.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】二次函數y=ax2-12ax+36a-5的圖象在4<x<5這一段位于x軸下方,在8<x<9這一段位于x軸上方,則a的值為___________
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(探究)
(1)觀察下列算式,并完成填空:
1=12
1+3=4=22;
1+3+5=9=32;
1+3+5+7=16=42;
1+3+5+…+(2n-1)=______.(n是正整數)
(2)如圖是某市一廣場用正六邊形、正方形和正三角形地板磚鋪設的圖案,圖案中央是一塊正六邊形地板磚,周圍是正方形和正三角形的地板磚.從里向外第一層包括6塊正方形和6塊正三角形地板磚;第二層包括6塊正方形和18塊正三角形地板磚;以此遞推.
①第3層中分別含有______塊正方形和______塊正三角形地板磚;
②第n層中含有______塊正三角形地板磚(用含n的代數式表示).
(應用)
該市打算在一個新建廣場中央,采用如圖樣式的圖案鋪設地面,現有1塊正六邊形、150塊正方形和420塊正三角形地板磚,問:鋪設這樣的圖案,最多能鋪多少層?請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知E為長方形紙片ABCD的邊CD上一點,將紙片沿AE對折,點D的對應點D′恰好在線段BE上.若AD=3,DE=1,則AB=_____.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知:二次函數y=﹣2x2+4x+m+1,與x軸的公共點為A,B.
(1)如果A與B重合,求m的值;
(2)橫、縱坐標都是整數的點叫做整點:
①當m=﹣1時,求線段AB上整點的個數;
②若設拋物線在點A,B之間的部分與線段AB所圍成的區(qū)域內(包括邊界)整點的個數為n,當1<n≤8時,結合函數的圖象,求m的取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com